We investigated the effects of oxygen vacancies on the structural, magnetic, and transport properties of Lal-xSrxMnO3 (x=0.1, 0.2, 0.33, 0.4, and 0.5) grown around a critical point (without/with oxygen vacancies) ...We investigated the effects of oxygen vacancies on the structural, magnetic, and transport properties of Lal-xSrxMnO3 (x=0.1, 0.2, 0.33, 0.4, and 0.5) grown around a critical point (without/with oxygen vacancies) under low oxygen pressure (10 Pa) and high oxygen pressure (40 Pa). We found that all films exhibit ferromagnetic behavior below the magnetic critical temperature, and that the films grown under low oxygen pressures have degraded magnetic properties with lower Curie temperatures and smaller magnetic moments. These results show that in epitaxial La1-xSrxMnO3 thin films, the magnetic and transport properties are very sensitive to doping concentration and oxygen vacancies. Phase diagrams of the films based on the doping concentration and oxygen vacancies were plotted and discussed.展开更多
基金supported by the National Key Basic Research Program of China(Grant Nos.2014CB921001,and 2013CB328706)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(GrantNo.QYZDJ-SSW-SLH020)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(GrantNo.XDB07030200)the National Natural Science Foundation of China(Grant Nos.11574365,11474349,11674385,and 11404380)
文摘We investigated the effects of oxygen vacancies on the structural, magnetic, and transport properties of Lal-xSrxMnO3 (x=0.1, 0.2, 0.33, 0.4, and 0.5) grown around a critical point (without/with oxygen vacancies) under low oxygen pressure (10 Pa) and high oxygen pressure (40 Pa). We found that all films exhibit ferromagnetic behavior below the magnetic critical temperature, and that the films grown under low oxygen pressures have degraded magnetic properties with lower Curie temperatures and smaller magnetic moments. These results show that in epitaxial La1-xSrxMnO3 thin films, the magnetic and transport properties are very sensitive to doping concentration and oxygen vacancies. Phase diagrams of the films based on the doping concentration and oxygen vacancies were plotted and discussed.