The rapid changes in flow pattern due to varying channel widths will make significantly impact on the hydraulic structures and evolutions of open channel. To better understand the impact of varying width, a flume expe...The rapid changes in flow pattern due to varying channel widths will make significantly impact on the hydraulic structures and evolutions of open channel. To better understand the impact of varying width, a flume experiment with adjustable width and a depth-averaged two-dimension numerical model were used to analyze the variations of flow parameters. Our experimental results showed that flow velocity gradually increased with decreasing water depth in converging region, and decreased with increasing water depth in diverging zones. It was also found that the turbulence intensity laws in three directions were not agreed with the theoretical relationships proposed by Nezu and Nakagawa in 1993 in straight open channel flows. The flow in the channel with varying width may change from the supercritical flow to the subcritical flow as a function of Froude number. Our numerical simulations with different flow rates showed that most of the hydraulic jumps in diverging region were submerged jump and the degree of submergence increased with increasing flow rate in gradual channel transition. When the flow rate increased, the range of supercritical flow rapidly decreased and the flow changed from the supercritieal condition to the subcritical condition in diverging sections.展开更多
A simulation for piston effect in supercritical carbon dioxide by employing a simple model is conducted. In the first place, the thermal properties of carbon dioxide near its liquid-vapor critical point are discussed....A simulation for piston effect in supercritical carbon dioxide by employing a simple model is conducted. In the first place, the thermal properties of carbon dioxide near its liquid-vapor critical point are discussed. It is calcu- lated that the heat capacity ratio and isobaric expansion coefficient of supercritical fluids are extremely high. Furthermore, the simulation for piston effect in supereritical carbon dioxide between two infinite vertical walls is presented. The numerical results prove that piston effect has a much faster speed of heat transfer than thermal conduction under mierogravity conditions. Moreover, the piston effect turns out to be stronger when closer to the critical point.展开更多
基金supported by the projects of Sichuan Province Science and technology support program (Grant No.2014SZ0163)National Natural Science Foundation of China (Grant No.41171016 and 51579163)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University (SKHL1309)
文摘The rapid changes in flow pattern due to varying channel widths will make significantly impact on the hydraulic structures and evolutions of open channel. To better understand the impact of varying width, a flume experiment with adjustable width and a depth-averaged two-dimension numerical model were used to analyze the variations of flow parameters. Our experimental results showed that flow velocity gradually increased with decreasing water depth in converging region, and decreased with increasing water depth in diverging zones. It was also found that the turbulence intensity laws in three directions were not agreed with the theoretical relationships proposed by Nezu and Nakagawa in 1993 in straight open channel flows. The flow in the channel with varying width may change from the supercritical flow to the subcritical flow as a function of Froude number. Our numerical simulations with different flow rates showed that most of the hydraulic jumps in diverging region were submerged jump and the degree of submergence increased with increasing flow rate in gradual channel transition. When the flow rate increased, the range of supercritical flow rapidly decreased and the flow changed from the supercritieal condition to the subcritical condition in diverging sections.
基金financially supported by the National Basic Research Program of China (973 Program) under Grant No.2012CB933200the National Natural Science Foundation of China under Grant No.51161140332
文摘A simulation for piston effect in supercritical carbon dioxide by employing a simple model is conducted. In the first place, the thermal properties of carbon dioxide near its liquid-vapor critical point are discussed. It is calcu- lated that the heat capacity ratio and isobaric expansion coefficient of supercritical fluids are extremely high. Furthermore, the simulation for piston effect in supereritical carbon dioxide between two infinite vertical walls is presented. The numerical results prove that piston effect has a much faster speed of heat transfer than thermal conduction under mierogravity conditions. Moreover, the piston effect turns out to be stronger when closer to the critical point.