In this paper, the author considers equations with critical exponent in n ≥4 space tions on the initial data, it is proved that there small the initial data are. the Cauchy problem for semilinear wave dimensions. Und...In this paper, the author considers equations with critical exponent in n ≥4 space tions on the initial data, it is proved that there small the initial data are. the Cauchy problem for semilinear wave dimensions. Under some positivity condican be no global solutions no matter how展开更多
We consider the quasilinear Schrdinger equations of the form-ε~2?u + V(x)u- ε~2?(u2)u = g(u), x ∈ R^N,where ε 〉 0 is a small parameter, the nonlinearity g(u) ∈ C^1(R) is an odd function with subcrit...We consider the quasilinear Schrdinger equations of the form-ε~2?u + V(x)u- ε~2?(u2)u = g(u), x ∈ R^N,where ε 〉 0 is a small parameter, the nonlinearity g(u) ∈ C^1(R) is an odd function with subcritical growth and V(x) is a positive Hlder continuous function which is bounded from below, away from zero, and infΛV(x) 0 such that for all ε∈(0, ε0],the above mentioned problem possesses a sign-changing solution uε which exhibits concentration profile around the local minimum point of V(x) as ε→ 0~+.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10225102)the 973 Project of the Ministry of Science and Technology of China.
文摘In this paper, the author considers equations with critical exponent in n ≥4 space tions on the initial data, it is proved that there small the initial data are. the Cauchy problem for semilinear wave dimensions. Under some positivity condican be no global solutions no matter how
基金supported by National Natural Science Foundation of China(Grant Nos.11371160 and 11328101)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.#IRT13066)
文摘We consider the quasilinear Schrdinger equations of the form-ε~2?u + V(x)u- ε~2?(u2)u = g(u), x ∈ R^N,where ε 〉 0 is a small parameter, the nonlinearity g(u) ∈ C^1(R) is an odd function with subcritical growth and V(x) is a positive Hlder continuous function which is bounded from below, away from zero, and infΛV(x) 0 such that for all ε∈(0, ε0],the above mentioned problem possesses a sign-changing solution uε which exhibits concentration profile around the local minimum point of V(x) as ε→ 0~+.