期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基坑开挖对邻近既有隧道变形影响范围的数值分析 被引量:51
1
作者 林杭 陈靖宇 +1 位作者 郭春 柳群义 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第11期4240-4247,共8页
为了研究基坑开挖对邻近既有隧道变形的影响范围,采用FLAC3D有限差分方法,分别改变基坑长度、宽度、隧道-基坑相对位置,计算隧道位移的变化情况,从而得到不同工况下基坑邻近隧道的变形情况。研究结果表明:位于基坑正下方和右侧的隧道,... 为了研究基坑开挖对邻近既有隧道变形的影响范围,采用FLAC3D有限差分方法,分别改变基坑长度、宽度、隧道-基坑相对位置,计算隧道位移的变化情况,从而得到不同工况下基坑邻近隧道的变形情况。研究结果表明:位于基坑正下方和右侧的隧道,其顶点的竖向位移和最左侧点的水平位移随基坑宽度和深度的增加而增大,随着隧道中心与基坑相对距离的增大而减小,但不同参数条件下隧道位移的变化幅度、斜率以及收敛情况各有不同;采用指数函数拟合得到基坑对邻近隧道变形影响范围的临界线函数,拟合相关系数R2接近1。 展开更多
关键词 基坑开挖 数值模拟 有限差分法 稳定性分析 临界线函数
下载PDF
Blow Up of Solutions to Semilinear Wave Equations with Critical Exponent in High Dimensions 被引量:22
2
作者 Yi ZHOU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2007年第2期205-212,共8页
In this paper, the author considers equations with critical exponent in n ≥4 space tions on the initial data, it is proved that there small the initial data are. the Cauchy problem for semilinear wave dimensions. Und... In this paper, the author considers equations with critical exponent in n ≥4 space tions on the initial data, it is proved that there small the initial data are. the Cauchy problem for semilinear wave dimensions. Under some positivity condican be no global solutions no matter how 展开更多
关键词 Semilinear wave equation Critical exponent Cauchy problem Blow up
原文传递
Existence and concentration behavior of sign-changing solutions for quasilinear Schr?dinger equations equations
3
作者 DENG YinBin SHUAI Wei 《Science China Mathematics》 SCIE CSCD 2016年第6期1095-1112,共18页
We consider the quasilinear Schrdinger equations of the form-ε~2?u + V(x)u- ε~2?(u2)u = g(u), x ∈ R^N,where ε 〉 0 is a small parameter, the nonlinearity g(u) ∈ C^1(R) is an odd function with subcrit... We consider the quasilinear Schrdinger equations of the form-ε~2?u + V(x)u- ε~2?(u2)u = g(u), x ∈ R^N,where ε 〉 0 is a small parameter, the nonlinearity g(u) ∈ C^1(R) is an odd function with subcritical growth and V(x) is a positive Hlder continuous function which is bounded from below, away from zero, and infΛV(x) 0 such that for all ε∈(0, ε0],the above mentioned problem possesses a sign-changing solution uε which exhibits concentration profile around the local minimum point of V(x) as ε→ 0~+. 展开更多
关键词 sign-changing solution quasilinear Schr6dinger equations concentration profile
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部