采用荧光光谱法结合神经网络优化对蒽芘双组分混合物进行了定量分析,提出了利用留一法交叉验证(leave one out cross validation,LOOCV)的模型训练方法,以解决混合样品光谱定量分析中用有限样品建立非线性回归模型的问题。蒽和芘混合样...采用荧光光谱法结合神经网络优化对蒽芘双组分混合物进行了定量分析,提出了利用留一法交叉验证(leave one out cross validation,LOOCV)的模型训练方法,以解决混合样品光谱定量分析中用有限样品建立非线性回归模型的问题。蒽和芘混合样品的激发波长为320nm,发射波长范围为320~450nm,以混合样品光谱数据的主分量作为输入、混合样品浓度作为输出进行LOOCV训练,对神经网络进行优化设计。在LOOCV实验结果中,预测10个测试质量较好的样品,平均相对误差(ARE)为3.39%,比预测所有12个样品的ARE低0.46%,样品最小相对误差可达到1.25%,10次重复实验相对标准偏差小于0.84%。该方法具有所需样品少、容错性好、分析精度高和稳定的特点。展开更多
通过对光谱的研究来识别和认证类星体是天文学研究中的重要方法。文章提出了一种对类星体光谱进行自动识别的自适应径向基神经网络(RBFN)方法。该方法包括以下几个步骤:(1)先将训练样本归一化,再利用PCA变换进行降维,获得样本特征向量;...通过对光谱的研究来识别和认证类星体是天文学研究中的重要方法。文章提出了一种对类星体光谱进行自动识别的自适应径向基神经网络(RBFN)方法。该方法包括以下几个步骤:(1)先将训练样本归一化,再利用PCA变换进行降维,获得样本特征向量;(2)设计出K均值聚类算法与梯度下降法相结合的径向基神经网络结构的基本模型,再用SSE(sum of squares error)误差函数进行判断,对RBFN隐含层的神经元进行自动调节,直至满足给定误差阈值;(3)用训练得到的参数对用于测试的样本中的类星体光谱进行识别。该方法不但克服了经典RBFN算法选择隐层神经元数目的困难,而且还提高了对类星体识别的稳定性和正确率。研究结果对于大型光谱巡天所产生的海量数据的自动处理具有重要意义。展开更多
文摘采用荧光光谱法结合神经网络优化对蒽芘双组分混合物进行了定量分析,提出了利用留一法交叉验证(leave one out cross validation,LOOCV)的模型训练方法,以解决混合样品光谱定量分析中用有限样品建立非线性回归模型的问题。蒽和芘混合样品的激发波长为320nm,发射波长范围为320~450nm,以混合样品光谱数据的主分量作为输入、混合样品浓度作为输出进行LOOCV训练,对神经网络进行优化设计。在LOOCV实验结果中,预测10个测试质量较好的样品,平均相对误差(ARE)为3.39%,比预测所有12个样品的ARE低0.46%,样品最小相对误差可达到1.25%,10次重复实验相对标准偏差小于0.84%。该方法具有所需样品少、容错性好、分析精度高和稳定的特点。
文摘通过对光谱的研究来识别和认证类星体是天文学研究中的重要方法。文章提出了一种对类星体光谱进行自动识别的自适应径向基神经网络(RBFN)方法。该方法包括以下几个步骤:(1)先将训练样本归一化,再利用PCA变换进行降维,获得样本特征向量;(2)设计出K均值聚类算法与梯度下降法相结合的径向基神经网络结构的基本模型,再用SSE(sum of squares error)误差函数进行判断,对RBFN隐含层的神经元进行自动调节,直至满足给定误差阈值;(3)用训练得到的参数对用于测试的样本中的类星体光谱进行识别。该方法不但克服了经典RBFN算法选择隐层神经元数目的困难,而且还提高了对类星体识别的稳定性和正确率。研究结果对于大型光谱巡天所产生的海量数据的自动处理具有重要意义。