An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended und...An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.展开更多
A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic ch...A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic change in its rheological properties by the application of an external magnetic field. The magneticfield of the disc-type MR fluid damper is analysed by the finite element method ; the controllability of the disctype MR fluid damper on the dynamic behaviour of a rotor system ; and the effectiveness of the disc-type MR fluid damper in controlling the vibration of a rotor system, are studied in a flexible rotor system with an over-hung disc. It is shown that the magnetic flux density of the disc-type MR fluid damper in the working areas can significantly change with the applied current in the coil ; and that the dynamic behavior of the disc-type MR fluid damper can be varied by the application of an external magnetic field produced by a low voltage electromagnetic coil. The disc-type MR fluid damper can significantly change the dynamic characteristics of a rotor system, provided that the location of the disk-type MR fluid damper is carefully chosen. The disc-type MR fluid damper is a new actuator with good dynamic characteristics for rotating machinery.展开更多
Due to the high viscosity of magnetorheological(MR)fluid,eliminating air pockets dissolved in the fluid is very difficult,which results in a force lag phenomenon.In order to evaluate the performance of a semi-active c...Due to the high viscosity of magnetorheological(MR)fluid,eliminating air pockets dissolved in the fluid is very difficult,which results in a force lag phenomenon.In order to evaluate the performance of a semi-active control system based on the MR damper considering the trapped air effect,a performance test on a MR damper is carried out under different loading cases,and the influence of the input current,excitation amplitude and frequency on the force lag phenomenon is analyzed.A concise and efficient parametric model,combining the simple Bouc-Wen model and a spring with small stiffness,is proposed to portray the experimental characteristics of the MR damper with force lag,and then the response analysis of the semi-active controlled single-degree-of-freedom(SDOF)structure is performed using the classic clipped-optimal control strategy based on acceleration feedback.Numerical results show that the trapped air in the MR fluid can weaken the control effect of the MR damper,and the performance of the semi-active control system will be reduced more obviously and become close to the passive-off control with the increasing content of air trapped in the MR fluid.展开更多
Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce th...Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.展开更多
Spark discharge plasma synthetic jets(SPJs) have been used for the active flow control study on an NACA 0021 straight-wing model in a wind tunnel. The model forces and moments were measured using a six-component sting...Spark discharge plasma synthetic jets(SPJs) have been used for the active flow control study on an NACA 0021 straight-wing model in a wind tunnel. The model forces and moments were measured using a six-component sting balance at a 20 m/s wind speed. The aim was to explore the SPJ's effect on airfoil aerodynamic by examining SPJ generators' position along the chordwise and the jet flow direction about the chord. Near the wing leading edge, two SPJ generators raised the stall angle by 2° and increased the maximum lift coefficient by 9%. The drag coefficient was decreased by 33.1%, and the lift-drag ratio was increased by 104.2% at an angle of attack above 16°. The rolling-moment coefficient was modified by 0.002, and the yawing-moment coefficient was changed by 0.0007 at angles of attack in the range of 0°–16°. The results showed that SPJs can control wing aerodynamic forces at a high angle of attack and moments at a low angle of attack.展开更多
It is well known that interactions between the leading edge of a blade and incoming vortical structures produce a sharp rise in fluctuating pressure nearby,contributing significantly to the noise production in various...It is well known that interactions between the leading edge of a blade and incoming vortical structures produce a sharp rise in fluctuating pressure nearby,contributing significantly to the noise production in various types of rotorcrafts.To suppress this fluctuating pressure and subsequently induced noise,as the first step,active control of interactions between an airfoil and incoming cylinder-generated vortices,which mimics the practical phenomenon,was experimentally investigated.The essence of the control is to create a local perturbation,using piezo-ceramic actuators,on the surface near the leading edge of the airfoil,thus modifying the airfoil-vortex interactions.Both open-and closed-loop methods were used,where the surface perturbation was controlled by an external sinusoidal wave and a feedback pressure signal from a pressure transducer installed at the leading edge,respectively.It was observed that the closed-loop control was superior to the open-loop one;the closed-and open-loop controls achieve a maximum reduction in the pressure fluctuation at the dominant vortex frequency by 32% and 11%,respectively.The detailed physics behind the observations was discussed.展开更多
The effects of turbulent intensity and vortex scale of simulated natural wind on performance of a horizontal axis wind turbine(HAWT) are mainly investigated in this paper. In particular, the unsteadiness and turbulenc...The effects of turbulent intensity and vortex scale of simulated natural wind on performance of a horizontal axis wind turbine(HAWT) are mainly investigated in this paper. In particular, the unsteadiness and turbulence of wind in Japan are stronger than ones in Europe and North America in general. Hence, Japanese engineers should take account of the velocity unsteadiness of natural wind at installed open-air location to design a higher performance wind turbine. Using the originally designed five wind turbines on the basis of NACA and MEL blades, the dependencies of the wind frequency and vortex scale of the simulated natural wind are presented. As the results, the power coefficient of the newly designed MEL3-type rotor in the simulated natural wind is 130% larger than one in steady wind.展开更多
In this article,we review the recent progress in active control of a turbulent boundary layer for skin-friction drag reduction.Near-wall coherent structures,which are closely associated with large skin-friction drag a...In this article,we review the recent progress in active control of a turbulent boundary layer for skin-friction drag reduction.Near-wall coherent structures,which are closely associated with large skin-friction drag and are thus often the target to be manipulated,are discussed briefly,providing a rationale of various control strategies.Open-and closed-loop controls are extensively reviewed,largely focusing on techniques and drag-reduction mechanisms.Finally,some concluding remarks are given.展开更多
Dynamic modeling and active control of a strap-on launch vehicle are studied in this paper. In the dynamic modeling, the double-compatible free-interface modal synthesis method is used to establish dynamic model of th...Dynamic modeling and active control of a strap-on launch vehicle are studied in this paper. In the dynamic modeling, the double-compatible free-interface modal synthesis method is used to establish dynamic model of the system, and its model precision is compared with those of finite element method(FEM), fixedinterface modal synthesis method and free-interface modal synthesis method. In the active control, the swing angle of rocket motor is used as design variable, and the control law design based on the model of mass center motion is adopted to validate the system. Simulation results indicate that the double-compatible model synthesis method can properly approximate the FEM which is used as the benchmark solution, and the model precision of the double-compatible modal synthesis method is obviously higher than those of the fixed-interface and freeinterface modal synthesis methods. Based on the control law design, the deflection of mass center of the launch vehicle is very small.展开更多
Taking into account the nonlinearity of vehicle dynamics and the variations of vehicle parameters,the integrated control strategy for active front steering(AFS)and direct yaw control(DYC)that can maintain the performa...Taking into account the nonlinearity of vehicle dynamics and the variations of vehicle parameters,the integrated control strategy for active front steering(AFS)and direct yaw control(DYC)that can maintain the performance and robustness is a key issue to be researched.Currently,the H∞method is widely applied to the integrated control of chassis dynamics,but it always sacrifices the performance in order to enhance the stability.The modified structure internal model robust control(MSIMC)obtained by modifying internal model control(IMC)structure is proposed for the integrated control of AFS and DYC to surmount the conflict between performance and robustness.Double lane change(DLC)simulation is developed to compare the performance and the stability of the MSIMC strategy,the PID controller based on the reference vehicle model and the H∞controller.Simulation results show that the PID controller may oscillate and go into instability in severe driving conditions because of large variations of tire parameters,the H∞controller sacrifices the performance in order to enhance the stability,and only the MSIMC controller can both ensure the robustness and the high performance of the integrated control of AFS and DYC.展开更多
基金Supported by the National Nature Foundation of China (No.59975073)
文摘An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.
文摘A disc-type magneto-rheological fluid damper operating in shear mode is proposed in this paper,which is based on the special characteristics of the magneto-rheological (MR) fluid with rapid, reversible and dramatic change in its rheological properties by the application of an external magnetic field. The magneticfield of the disc-type MR fluid damper is analysed by the finite element method ; the controllability of the disctype MR fluid damper on the dynamic behaviour of a rotor system ; and the effectiveness of the disc-type MR fluid damper in controlling the vibration of a rotor system, are studied in a flexible rotor system with an over-hung disc. It is shown that the magnetic flux density of the disc-type MR fluid damper in the working areas can significantly change with the applied current in the coil ; and that the dynamic behavior of the disc-type MR fluid damper can be varied by the application of an external magnetic field produced by a low voltage electromagnetic coil. The disc-type MR fluid damper can significantly change the dynamic characteristics of a rotor system, provided that the location of the disk-type MR fluid damper is carefully chosen. The disc-type MR fluid damper is a new actuator with good dynamic characteristics for rotating machinery.
基金The National Science Fund for Distinguished Young Scholars(No.51625803)China and Korea International Cooperation Project of the National Key Research and Development Program(No.2016YEE0119700)+3 种基金the Fundamental Research Funds for the Central Universities(No.3205008102)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.CE02-2-33)Research and Innovation Project for College Graduates of Jiangsu Province(No.KYLX15_0088,KYLX16_0255)the State Foundation for Studying Abroad,China
文摘Due to the high viscosity of magnetorheological(MR)fluid,eliminating air pockets dissolved in the fluid is very difficult,which results in a force lag phenomenon.In order to evaluate the performance of a semi-active control system based on the MR damper considering the trapped air effect,a performance test on a MR damper is carried out under different loading cases,and the influence of the input current,excitation amplitude and frequency on the force lag phenomenon is analyzed.A concise and efficient parametric model,combining the simple Bouc-Wen model and a spring with small stiffness,is proposed to portray the experimental characteristics of the MR damper with force lag,and then the response analysis of the semi-active controlled single-degree-of-freedom(SDOF)structure is performed using the classic clipped-optimal control strategy based on acceleration feedback.Numerical results show that the trapped air in the MR fluid can weaken the control effect of the MR damper,and the performance of the semi-active control system will be reduced more obviously and become close to the passive-off control with the increasing content of air trapped in the MR fluid.
基金Project(51205415)supported by the National Natural Science Foundation of ChinaProject(14JJ3020)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2013M542129)supported by China Postdoctoral Science FoundationProject(2012QNZT014)supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the Postdoctoral Foundation of Central South University,China
文摘Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.
文摘Spark discharge plasma synthetic jets(SPJs) have been used for the active flow control study on an NACA 0021 straight-wing model in a wind tunnel. The model forces and moments were measured using a six-component sting balance at a 20 m/s wind speed. The aim was to explore the SPJ's effect on airfoil aerodynamic by examining SPJ generators' position along the chordwise and the jet flow direction about the chord. Near the wing leading edge, two SPJ generators raised the stall angle by 2° and increased the maximum lift coefficient by 9%. The drag coefficient was decreased by 33.1%, and the lift-drag ratio was increased by 104.2% at an angle of attack above 16°. The rolling-moment coefficient was modified by 0.002, and the yawing-moment coefficient was changed by 0.0007 at angles of attack in the range of 0°–16°. The results showed that SPJs can control wing aerodynamic forces at a high angle of attack and moments at a low angle of attack.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51076153, 50836006) and‘Hundred Talent Program’ of Chinese Academy of Sciences
文摘It is well known that interactions between the leading edge of a blade and incoming vortical structures produce a sharp rise in fluctuating pressure nearby,contributing significantly to the noise production in various types of rotorcrafts.To suppress this fluctuating pressure and subsequently induced noise,as the first step,active control of interactions between an airfoil and incoming cylinder-generated vortices,which mimics the practical phenomenon,was experimentally investigated.The essence of the control is to create a local perturbation,using piezo-ceramic actuators,on the surface near the leading edge of the airfoil,thus modifying the airfoil-vortex interactions.Both open-and closed-loop methods were used,where the surface perturbation was controlled by an external sinusoidal wave and a feedback pressure signal from a pressure transducer installed at the leading edge,respectively.It was observed that the closed-loop control was superior to the open-loop one;the closed-and open-loop controls achieve a maximum reduction in the pressure fluctuation at the dominant vortex frequency by 32% and 11%,respectively.The detailed physics behind the observations was discussed.
基金supported by Hatakeyama Grant-in-Aid(2014)of Turbomachinery of Japanthe support of Dr.Hikaru Matsumiya and Dr.Tetsuya Kogaki(National Institute of Advanced Industrial Science and Technology of Japan)for providing MEL blade data
文摘The effects of turbulent intensity and vortex scale of simulated natural wind on performance of a horizontal axis wind turbine(HAWT) are mainly investigated in this paper. In particular, the unsteadiness and turbulence of wind in Japan are stronger than ones in Europe and North America in general. Hence, Japanese engineers should take account of the velocity unsteadiness of natural wind at installed open-air location to design a higher performance wind turbine. Using the originally designed five wind turbines on the basis of NACA and MEL blades, the dependencies of the wind frequency and vortex scale of the simulated natural wind are presented. As the results, the power coefficient of the newly designed MEL3-type rotor in the simulated natural wind is 130% larger than one in steady wind.
基金supported by the Research Grants Council of HKSAR (Grant No. PolyU 5350/10E)
文摘In this article,we review the recent progress in active control of a turbulent boundary layer for skin-friction drag reduction.Near-wall coherent structures,which are closely associated with large skin-friction drag and are thus often the target to be manipulated,are discussed briefly,providing a rationale of various control strategies.Open-and closed-loop controls are extensively reviewed,largely focusing on techniques and drag-reduction mechanisms.Finally,some concluding remarks are given.
基金the National Natural Science Foundation of China(Nos.11132001,11272202 and 11472171)the Key Scientific Project of Shanghai Municipal Education Commission(No.14ZZ021)the Natural Science Foundation of Shanghai(No.14ZR1421000)
文摘Dynamic modeling and active control of a strap-on launch vehicle are studied in this paper. In the dynamic modeling, the double-compatible free-interface modal synthesis method is used to establish dynamic model of the system, and its model precision is compared with those of finite element method(FEM), fixedinterface modal synthesis method and free-interface modal synthesis method. In the active control, the swing angle of rocket motor is used as design variable, and the control law design based on the model of mass center motion is adopted to validate the system. Simulation results indicate that the double-compatible model synthesis method can properly approximate the FEM which is used as the benchmark solution, and the model precision of the double-compatible modal synthesis method is obviously higher than those of the fixed-interface and freeinterface modal synthesis methods. Based on the control law design, the deflection of mass center of the launch vehicle is very small.
基金supported by the National Natural Science Foundation of China(Grant No.51375009 and 11072106)
文摘Taking into account the nonlinearity of vehicle dynamics and the variations of vehicle parameters,the integrated control strategy for active front steering(AFS)and direct yaw control(DYC)that can maintain the performance and robustness is a key issue to be researched.Currently,the H∞method is widely applied to the integrated control of chassis dynamics,but it always sacrifices the performance in order to enhance the stability.The modified structure internal model robust control(MSIMC)obtained by modifying internal model control(IMC)structure is proposed for the integrated control of AFS and DYC to surmount the conflict between performance and robustness.Double lane change(DLC)simulation is developed to compare the performance and the stability of the MSIMC strategy,the PID controller based on the reference vehicle model and the H∞controller.Simulation results show that the PID controller may oscillate and go into instability in severe driving conditions because of large variations of tire parameters,the H∞controller sacrifices the performance in order to enhance the stability,and only the MSIMC controller can both ensure the robustness and the high performance of the integrated control of AFS and DYC.