期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Web页面信息主动检索模型 被引量:1
1
作者 袁鼎荣 钟宁 《智能系统学报》 2010年第2期112-116,共5页
单个页面信息量远远大于特定用户对页面中的信息需求.为快速准确从当前页面中获取特定用户所需求的兴趣信息,提出了页面信息主动检索模型.该检索模型中,根据页面Block特点将当前Web页面转化成信息树,根据用户过去的浏览行为构造用户特征... 单个页面信息量远远大于特定用户对页面中的信息需求.为快速准确从当前页面中获取特定用户所需求的兴趣信息,提出了页面信息主动检索模型.该检索模型中,根据页面Block特点将当前Web页面转化成信息树,根据用户过去的浏览行为构造用户特征树,挖掘用户特征树产生用户需求信息集,然后从当前页面中检索需求的信息,获取用户兴趣信息集.详述了主动检索的基本原理,给出了相应的算法描述,并通过实验证明了该模型具有可行性. 展开更多
关键词 页面Block 页面信息树 用户特征树 主动检索
下载PDF
如何在物理阅读中变“被动接收信息”为“主动检索信息”
2
作者 张小洪 《物理教学探讨》 2022年第4期78-80,共3页
阅读的过程,首先是一个接收信息的过程。高中生在阅读物理材料的过程中,可以借助已有的对知识的理解、已经形成的知识体系以及一定的“批判意识”,变“被动接收信息”为“主动检索信息”,使得物理阅读更准确、更高效。
关键词 物理阅读 被动接收信息 主动检索信息
下载PDF
Active learning based on maximizing information gain for content-based image retrieval
3
作者 徐杰 施鹏飞 《Journal of Southeast University(English Edition)》 EI CAS 2004年第4期431-435,共5页
This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed ac... This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations. 展开更多
关键词 active learning content-based image retrieval relevance feedback support vector machines similarity measure
下载PDF
Knowledge Automatic Indexing Based on Concept Lexicon and Segm-entation Algorithm
4
作者 王兰成 蒋丹 乐嘉锦 《Journal of Donghua University(English Edition)》 EI CAS 2005年第1期26-30,共5页
This paper is based on two existing theories about automatic indexing of thematic knowledge concept. The prohibit-word table with position information has been designed. The improved Maximum Matching-Minimum Backtrack... This paper is based on two existing theories about automatic indexing of thematic knowledge concept. The prohibit-word table with position information has been designed. The improved Maximum Matching-Minimum Backtracking method has been researched. Moreover it has been studied on improved indexing algorithm and application technology based on rules and thematic concept word table. 展开更多
关键词 Concept Lexicon Segmentation Algorithm Knowledge Indexing.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部