To reduce the variations of the production process in penicillin cultivations, a rolling multivariate statis-tical approach based on multiway principle component analysis (MPCA) is developed and used for fault diagnos...To reduce the variations of the production process in penicillin cultivations, a rolling multivariate statis-tical approach based on multiway principle component analysis (MPCA) is developed and used for fault diagnosis of penicillin cultivations. Using the moving data windows technique, the static MPCA is extended for use in dy-namic process performance monitoring. The control chart is set up using the historical data collected from the past successful batches, thereby resulting in simplification of monitoring charts, easy tracking of the progress in each batch run, and monitoring the occurrence of the observable upsets. Data from the commercial-scale penicillin fer-mentation process are used to develop the rolling model. Using this method, faults are detected in real time and the corresponding measurements of these faults are directly made through inspection of a few simple plots (t-chart, SPE-chart, and T2-chart). Thus, the present methodology allows the process operator to actively monitor the data from several cultivations simultaneously.展开更多
Based on Hertz theory of elastic contact and the design theory of ball bearings, a new type of rolling coupling was designed. The two halves of the rolling coupling can be moved relatively by a small axial force when ...Based on Hertz theory of elastic contact and the design theory of ball bearings, a new type of rolling coupling was designed. The two halves of the rolling coupling can be moved relatively by a small axial force when a great moment is exerted on it. The rolling coupling was used to connect the principal axis and the decelerator of continuous extrusion machine and it can greatly decrease the harmful axial forces on the continuous machine. The engineering formulas for the contact stress and distance of apporach of the rolling elements were deduced and the method for designing the rolling couplings was proposed. The formulas for the forces exerted on the rolling element were verified by the experiment.展开更多
The demand for short term energy storage providing high power for electric and hybrid-electric vehicles is increasing drastically. Stationary FESS (flywheel energy storage systems) is established as UPS (uninterrup...The demand for short term energy storage providing high power for electric and hybrid-electric vehicles is increasing drastically. Stationary FESS (flywheel energy storage systems) is established as UPS (uninterruptible power supply) and represent an emerging market. In contrast, mobile FESSs are currently only used in a few application, e.g., in motor sports. To enable a wider use in personal and public transportation the life-span of the flywheel's bearings needs to be increased significantly. This paper presents an alternative approach to extend the lifespan of the flywheel's bearings significantly by using a CREAMB (combination of rolling element and active magnetic bearings).展开更多
This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumpti...This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumption. The first part vehicle controller is derived in the context of receding horizon optimal control by constructing and solving an optimization problem of overall fuel consumption. The Second part platoon controller is a complementation of the first part, which is given on the basis of platoon stability analysis. The effectiveness of the presented platoon control method is demonstrated by both numerical simulations and experiments with laboratory-scale Arduino cars.展开更多
基金Supported by the National Natural Science Foundation of China (No.60574038).
文摘To reduce the variations of the production process in penicillin cultivations, a rolling multivariate statis-tical approach based on multiway principle component analysis (MPCA) is developed and used for fault diagnosis of penicillin cultivations. Using the moving data windows technique, the static MPCA is extended for use in dy-namic process performance monitoring. The control chart is set up using the historical data collected from the past successful batches, thereby resulting in simplification of monitoring charts, easy tracking of the progress in each batch run, and monitoring the occurrence of the observable upsets. Data from the commercial-scale penicillin fer-mentation process are used to develop the rolling model. Using this method, faults are detected in real time and the corresponding measurements of these faults are directly made through inspection of a few simple plots (t-chart, SPE-chart, and T2-chart). Thus, the present methodology allows the process operator to actively monitor the data from several cultivations simultaneously.
文摘Based on Hertz theory of elastic contact and the design theory of ball bearings, a new type of rolling coupling was designed. The two halves of the rolling coupling can be moved relatively by a small axial force when a great moment is exerted on it. The rolling coupling was used to connect the principal axis and the decelerator of continuous extrusion machine and it can greatly decrease the harmful axial forces on the continuous machine. The engineering formulas for the contact stress and distance of apporach of the rolling elements were deduced and the method for designing the rolling couplings was proposed. The formulas for the forces exerted on the rolling element were verified by the experiment.
文摘The demand for short term energy storage providing high power for electric and hybrid-electric vehicles is increasing drastically. Stationary FESS (flywheel energy storage systems) is established as UPS (uninterruptible power supply) and represent an emerging market. In contrast, mobile FESSs are currently only used in a few application, e.g., in motor sports. To enable a wider use in personal and public transportation the life-span of the flywheel's bearings needs to be increased significantly. This paper presents an alternative approach to extend the lifespan of the flywheel's bearings significantly by using a CREAMB (combination of rolling element and active magnetic bearings).
基金supported by the National Natural Science Foundation of China(Grant Nos.61273107 and 61573077)Dalian Leading Talent(Grant No.841252)
文摘This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumption. The first part vehicle controller is derived in the context of receding horizon optimal control by constructing and solving an optimization problem of overall fuel consumption. The Second part platoon controller is a complementation of the first part, which is given on the basis of platoon stability analysis. The effectiveness of the presented platoon control method is demonstrated by both numerical simulations and experiments with laboratory-scale Arduino cars.