Compared to traditional polymer hydrogels,supramolecular hydrogels exhibits superior reversibility and stimulus response due to the instantaneous and reversible nature of non-covalent bonds.In this paper,we utilized t...Compared to traditional polymer hydrogels,supramolecular hydrogels exhibits superior reversibility and stimulus response due to the instantaneous and reversible nature of non-covalent bonds.In this paper,we utilized the host-guest exclusion interaction between Decamethylcucurbit[5]uril(Me_(10)Q[5])and the 2,7-diaminofluorenedihydrochloride(DAF·HCl)to construct a Q[n]-based hydrogel system.The composition,structure,and properties of the hydrogel were compre-hensively characterized using rheometer,nuclear magnetic resonance,scanning electron microscope.This cost-effective and straightforward hydrogel synthesis method paves the way for the scalable production of practical and commercially viable Q[n]-based hydrogels.展开更多
Dimension-controllable supramolecular organic frameworks(SOFs)with aggregation-enhanced fluorescence are hierarchically fabricated through the host-guest interactions of cucurbit[8]uril(CB[8])and coumarin-modified tet...Dimension-controllable supramolecular organic frameworks(SOFs)with aggregation-enhanced fluorescence are hierarchically fabricated through the host-guest interactions of cucurbit[8]uril(CB[8])and coumarin-modified tetraphenylethylene derivatives(TPEC).The three-dimensional layered SOFs could be constructed from the further stacking of two-dimensional mono-layered structures via simply regulating the self-assembly conditions including the culturing time and concentration.Upon light irradiation under the wavelength of 365 nm,the photodimerization of coumarin moieties occurred,which resulted in the transformation of the resultant TPECn/CB[8]4n two-dimensional SOFs into robust covalently-connected 2D polymers with molecular thickness.Interestingly,the supramolecular system of TPEC/CB[8]exhibited intriguing multicolor fluorescence emission from yellow to blue in the time range of 0-24 h at 365 nm irradiation,possessing potential applicability for photochromic fluorescence ink.展开更多
Two series monot ailed porphyrins, Cobalt-5- {4- [ω- (1-adamant aneamino) alkyloxy] phenyl }- 10,15,20-triphenyl porphyrinate (CoPCnA, n=4,5,6) and Nickel-5-{4-[ω-(1-adamantaneamino)alkyloxy]phenyl}-10,15.20- ...Two series monot ailed porphyrins, Cobalt-5- {4- [ω- (1-adamant aneamino) alkyloxy] phenyl }- 10,15,20-triphenyl porphyrinate (CoPCnA, n=4,5,6) and Nickel-5-{4-[ω-(1-adamantaneamino)alkyloxy]phenyl}-10,15.20- triphenyl porphyrinate (NiPCnA, n=4,5,6), were synthesized, in which the porphyrin moiety was connected to l-adamantanamine via a flexible hydrocarbon chain. The fluorescence quenching between these donor substrates and mono-6-p-nitrobenzoyl-β-cyclodextrin (NBCD) was studied in detail. Distinct fluorescence quenching occured in these supramolecular systems. This quenching was attributed to the photoinduced electron transfer (PET) inside the supramolecular assembly between the porphyrin donors and cyclodextrin acceptors. Detailed Stern-Volmer constants were measured and they were partitioned into dynamic Stern- Volmer quenching constants and static binding constants. It was demonstrated that the PET interaction between the porphyrin subunits and NBCD is indeed effective.展开更多
The high-temperature(HT) and low-temperature(LT) hydrothermal stabilities of molecular-sieve-based catalysts are important for the selective catalytic reduction of NOx with ammonia(NH3-SCR). In this paper, we report a...The high-temperature(HT) and low-temperature(LT) hydrothermal stabilities of molecular-sieve-based catalysts are important for the selective catalytic reduction of NOx with ammonia(NH3-SCR). In this paper, we report a catalyst, Cu2+ loading SAPO-17, synthesized using cyclohexylamine(CHA), which is commercially available and inexpensive and is utilized in NH3-SCR reduction for the first time. After systematic investigations on the optimization of Si and Cu2+ contents, it was concluded that Cu-SAPO-17-8.0%-0.22 displays favorable catalytic performance, even after being heated at 353 K for 24 h and at 973 K for 16 h. Moreover, the locations of CHAs, host–guest interaction and the Bronsted acid sites were explored by Rietveld refinement against powder X-ray diffraction data of as-made SAPO-17-8.0%. The refinement results showed that two CHAs exist within one eri cage and that the protonated CHA forms a hydrogen bond with O4, which indicates that the proton bonding with O4 will form the Bronsted acid site after the calcination.展开更多
The clinical translation of nanomedicines has been strongly hampered by the limitations of delivery vehicles,promoting scientists to search for novel nanocarriers.Although cell membrane-based delivery systems have att...The clinical translation of nanomedicines has been strongly hampered by the limitations of delivery vehicles,promoting scientists to search for novel nanocarriers.Although cell membrane-based delivery systems have attracted extensive attention,further functionalizations are urgently desired to augment their theranostic functions.We propose a cell-friendly supramolecular strategy to engineer cell membranes utilizing cyclodextrin-based host–guest molecular recognitions to fix the defects arising from chemical and genetic modifcations.In this study,the supramolecular cell membrane vesicles(SCMVs)specifcally accumulate in tumors,benefting from tumor-homing capability and the enhanced permeability and retention effect.SCMVs co-delivering indocyanine green and an indoleamine 2,3-dioxygenase inhibitor effectively ablate tumors combining photodynamic therapy and immunotherapy.Driven by host–guest inclusion complexation,SCMVs successfully encapsulate resiquimod to repolarize tumor-associated macrophages into M1 phenotype,synergizing with immune checkpoint blockade therapy.This supramolecular engineering methodology based on noncovalent interactions presents a generalizable and cell-friendly tactic to develop living cell–originated nanomaterials for precise cancer therapy.展开更多
文摘Compared to traditional polymer hydrogels,supramolecular hydrogels exhibits superior reversibility and stimulus response due to the instantaneous and reversible nature of non-covalent bonds.In this paper,we utilized the host-guest exclusion interaction between Decamethylcucurbit[5]uril(Me_(10)Q[5])and the 2,7-diaminofluorenedihydrochloride(DAF·HCl)to construct a Q[n]-based hydrogel system.The composition,structure,and properties of the hydrogel were compre-hensively characterized using rheometer,nuclear magnetic resonance,scanning electron microscope.This cost-effective and straightforward hydrogel synthesis method paves the way for the scalable production of practical and commercially viable Q[n]-based hydrogels.
基金supported by Anhui Province Natural Science Funds(2008085QE209)K2020-03 from the State Key Laboratory of Molecular Engineering of Polymers(Fudan University)。
文摘Dimension-controllable supramolecular organic frameworks(SOFs)with aggregation-enhanced fluorescence are hierarchically fabricated through the host-guest interactions of cucurbit[8]uril(CB[8])and coumarin-modified tetraphenylethylene derivatives(TPEC).The three-dimensional layered SOFs could be constructed from the further stacking of two-dimensional mono-layered structures via simply regulating the self-assembly conditions including the culturing time and concentration.Upon light irradiation under the wavelength of 365 nm,the photodimerization of coumarin moieties occurred,which resulted in the transformation of the resultant TPECn/CB[8]4n two-dimensional SOFs into robust covalently-connected 2D polymers with molecular thickness.Interestingly,the supramolecular system of TPEC/CB[8]exhibited intriguing multicolor fluorescence emission from yellow to blue in the time range of 0-24 h at 365 nm irradiation,possessing potential applicability for photochromic fluorescence ink.
基金V. ACKN0WLEDGMENT This work was supported Science Foundation of China by the National Natural (No.20472079).
文摘Two series monot ailed porphyrins, Cobalt-5- {4- [ω- (1-adamant aneamino) alkyloxy] phenyl }- 10,15,20-triphenyl porphyrinate (CoPCnA, n=4,5,6) and Nickel-5-{4-[ω-(1-adamantaneamino)alkyloxy]phenyl}-10,15.20- triphenyl porphyrinate (NiPCnA, n=4,5,6), were synthesized, in which the porphyrin moiety was connected to l-adamantanamine via a flexible hydrocarbon chain. The fluorescence quenching between these donor substrates and mono-6-p-nitrobenzoyl-β-cyclodextrin (NBCD) was studied in detail. Distinct fluorescence quenching occured in these supramolecular systems. This quenching was attributed to the photoinduced electron transfer (PET) inside the supramolecular assembly between the porphyrin donors and cyclodextrin acceptors. Detailed Stern-Volmer constants were measured and they were partitioned into dynamic Stern- Volmer quenching constants and static binding constants. It was demonstrated that the PET interaction between the porphyrin subunits and NBCD is indeed effective.
文摘The high-temperature(HT) and low-temperature(LT) hydrothermal stabilities of molecular-sieve-based catalysts are important for the selective catalytic reduction of NOx with ammonia(NH3-SCR). In this paper, we report a catalyst, Cu2+ loading SAPO-17, synthesized using cyclohexylamine(CHA), which is commercially available and inexpensive and is utilized in NH3-SCR reduction for the first time. After systematic investigations on the optimization of Si and Cu2+ contents, it was concluded that Cu-SAPO-17-8.0%-0.22 displays favorable catalytic performance, even after being heated at 353 K for 24 h and at 973 K for 16 h. Moreover, the locations of CHAs, host–guest interaction and the Bronsted acid sites were explored by Rietveld refinement against powder X-ray diffraction data of as-made SAPO-17-8.0%. The refinement results showed that two CHAs exist within one eri cage and that the protonated CHA forms a hydrogen bond with O4, which indicates that the proton bonding with O4 will form the Bronsted acid site after the calcination.
基金supported by the Vanke Special Fund for Public Health and Health Discipline Development,Tsinghua University(2022Z82WKJ005,2022Z82WKJ013)the Tsinghua University Spring Breeze Fund(2021Z99CFZ007)+2 种基金the National Natural Science Foundation of China(22175107)Funding by Tsinghua Universitythe Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study(SN-ZJU-SIAS-006)。
文摘The clinical translation of nanomedicines has been strongly hampered by the limitations of delivery vehicles,promoting scientists to search for novel nanocarriers.Although cell membrane-based delivery systems have attracted extensive attention,further functionalizations are urgently desired to augment their theranostic functions.We propose a cell-friendly supramolecular strategy to engineer cell membranes utilizing cyclodextrin-based host–guest molecular recognitions to fix the defects arising from chemical and genetic modifcations.In this study,the supramolecular cell membrane vesicles(SCMVs)specifcally accumulate in tumors,benefting from tumor-homing capability and the enhanced permeability and retention effect.SCMVs co-delivering indocyanine green and an indoleamine 2,3-dioxygenase inhibitor effectively ablate tumors combining photodynamic therapy and immunotherapy.Driven by host–guest inclusion complexation,SCMVs successfully encapsulate resiquimod to repolarize tumor-associated macrophages into M1 phenotype,synergizing with immune checkpoint blockade therapy.This supramolecular engineering methodology based on noncovalent interactions presents a generalizable and cell-friendly tactic to develop living cell–originated nanomaterials for precise cancer therapy.