-
题名凸二次规划主对偶内点法的一个扩展问题
被引量:1
- 1
-
-
作者
方铭
杨冰
-
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
1995年第2期60-65,共6页
-
基金
黑龙江省自然科学基金
-
文摘
给出一个求解凸二次规划的主对偶内点法的扩展问题,它与原问题有相同的规模,易于操作。
-
关键词
凸二次规划
主对偶内点法
大M法
扩展问题
-
Keywords
convex quadratic programming
primal- dual interior point algorithms
big M methods
-
分类号
O211.2
[理学—概率论与数理统计]
-
-
题名一种基于稀疏优化的数独求解新方法
被引量:8
- 2
-
-
作者
张煜东
王水花
霍元恺
吴乐南
-
机构
东南大学信息科学与工程学院
-
出处
《南京信息工程大学学报(自然科学版)》
CAS
2011年第1期23-27,共5页
-
基金
国家自然科学基金(60872075)
-
文摘
为了更好地求解数独问题,提出一种新的求解方法:采用实数编码去除整数约束,同时采用0范数作为目标函数来保证解的稀疏性.在此基础上,根据RIP(Restricted Isometry Property)与KGG(Kashin Garnaev Gluskin)条件,用1范数近似0范数.最后引入松弛矢量,使1范数转换为一个凸线性规划问题.采用主对偶内点法求解该线性规划问题.实验表明:该方法对简单、中等、困难、恶魔级别的数独,可达到100%成功率;对最小提示数目的17数独,达到86.4%的成功率.另外,该算法耗时短,且与数独的难度无关.因此,该算法在成功率与运行时间上均优于约束规划与Sinkhorn算法.
-
关键词
数独
约束规划
整数规划
线性规
划
主对偶内点法
-
Keywords
sudoku
constraint programming
integer programming
linear programming
primal-dual interior point method
-
分类号
O29
[理学—应用数学]
-