主导感(sense of agency)是个体感知到的对自身行为及行为后果的控制感。主导感的产生既基于内部的感觉运动信息,也基于动作系统以外的外部信息。寻求内部状态的代理模型(seeking proxies for internal states,SPIS)提出,强迫症(obsessi...主导感(sense of agency)是个体感知到的对自身行为及行为后果的控制感。主导感的产生既基于内部的感觉运动信息,也基于动作系统以外的外部信息。寻求内部状态的代理模型(seeking proxies for internal states,SPIS)提出,强迫症(obsessive-compulsive disorder)个体会削弱对自身内部状态的访问,转而寻求外部代理,因此,强迫症患者的主导感较低。未来研究可以尝试将主导感分解为不同的维度或通过追踪研究探索主导感降低是否能够预测强迫症的发病。展开更多
Mobile robot navigation in unknown environment is an advanced research hotspot.Simultaneous localization and mapping(SLAM)is the key requirement for mobile robot to accomplish navigation.Recently,many researchers stud...Mobile robot navigation in unknown environment is an advanced research hotspot.Simultaneous localization and mapping(SLAM)is the key requirement for mobile robot to accomplish navigation.Recently,many researchers study SLAM by using laser scanners,sonar,camera,etc.This paper proposes a method that consists of a Kinect sensor along with a normal laptop to control a small mobile robot for collecting information and building a global map of an unknown environment on a remote workstation.The information(depth data)is communicated wirelessly.Gmapping(a highly efficient Rao-Blackwellized particle filer to learn grid maps from laser range data)parameters have been optimized to improve the accuracy of the map generation and the laser scan.Experiment is performed on Turtlebot to verify the effectiveness of the proposed method.展开更多
文摘主导感(sense of agency)是个体感知到的对自身行为及行为后果的控制感。主导感的产生既基于内部的感觉运动信息,也基于动作系统以外的外部信息。寻求内部状态的代理模型(seeking proxies for internal states,SPIS)提出,强迫症(obsessive-compulsive disorder)个体会削弱对自身内部状态的访问,转而寻求外部代理,因此,强迫症患者的主导感较低。未来研究可以尝试将主导感分解为不同的维度或通过追踪研究探索主导感降低是否能够预测强迫症的发病。
基金National Natural Science Foundation of China(Nos.51475328,61372143,61671321)
文摘Mobile robot navigation in unknown environment is an advanced research hotspot.Simultaneous localization and mapping(SLAM)is the key requirement for mobile robot to accomplish navigation.Recently,many researchers study SLAM by using laser scanners,sonar,camera,etc.This paper proposes a method that consists of a Kinect sensor along with a normal laptop to control a small mobile robot for collecting information and building a global map of an unknown environment on a remote workstation.The information(depth data)is communicated wirelessly.Gmapping(a highly efficient Rao-Blackwellized particle filer to learn grid maps from laser range data)parameters have been optimized to improve the accuracy of the map generation and the laser scan.Experiment is performed on Turtlebot to verify the effectiveness of the proposed method.