期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
空谱特征分层融合的高光谱图像特征提取 被引量:7
1
作者 姚本佐 何芳 《国土资源遥感》 CSCD 北大核心 2019年第3期59-64,共6页
利用基于光谱维的特征提取方法将原始高光谱图像数据降到一定维数,对降维后的数据采用多尺度自适应加权滤波器(adaptive weighted filters,AWF)进行滤波,将在所有尺度上得到的滤波结果分层融合为新的图像,设计了分层融合框架,有效提取... 利用基于光谱维的特征提取方法将原始高光谱图像数据降到一定维数,对降维后的数据采用多尺度自适应加权滤波器(adaptive weighted filters,AWF)进行滤波,将在所有尺度上得到的滤波结果分层融合为新的图像,设计了分层融合框架,有效提取出了高光谱图像中重要的空谱特征,从而提高了分类精度。又将主成分分析(principal component analysis,PCA)算法融入到该框架中,提出了分层融合-主成分分析(hierarchical fusion principal component analysis,HF-PCA)算法。该方法不仅降低了波段间的冗余性,而且削弱了样本的类内差异性,提高了高光谱图像的分类精度。在Indian Pines和Salinas数据库上的实验结果表明,即使在训练样本数量较少的情况下,由HF- PCA算法得到的分类精度明显高于其他算法,2种数据总体分类精度的最大值分别为86.73%和95.01%,有效提高了高光谱图像的分类精度。 展开更多
关键词 空谱特征 分层融合 分层融合-成分分析 高光谱图像分类
下载PDF
彩色立体图像质量评价方法 被引量:5
2
作者 仉静 桑庆兵 《计算机应用》 CSCD 北大核心 2015年第3期816-820,共5页
现有的大多数立体图像质量评价方法都是将彩色图像转换为灰度图像,从而丧失了色彩信息,不利于对彩色立体图像作出正确评价,针对这一问题,提出了一种彩色立体图像质量评价方法。首先,通过对参考图像对和失真图像对分别进行主成分分析(PCA... 现有的大多数立体图像质量评价方法都是将彩色图像转换为灰度图像,从而丧失了色彩信息,不利于对彩色立体图像作出正确评价,针对这一问题,提出了一种彩色立体图像质量评价方法。首先,通过对参考图像对和失真图像对分别进行主成分分析(PCA)融合生成彩色图像,利用彩色小波变换分别提取彩色融合图像的低频系数;然后,把低频系数信息用四元数表示,即将低频系数的色相分量局部均值作为四元数的实部,三基色分量作为四元数的虚部,通过四元数奇异值分解得到奇异值特征向量;最后,对参考图像和失真图像的奇异值特征向量作余弦夹角、巴氏距离、卡方距离,分别作为立体图像质量评价指标。该方法在德克萨斯大学公布的对称失真立体图像库和非对称失真立体图像库分别进行验证,线性相关系数和斯皮尔曼等级相关系数(SROCC)在对称失真库中可高达0.919和0.923,与主观评价吻合度很高。 展开更多
关键词 立体图像质量评价 主成分分析融合 彩色小波变换 四元数
下载PDF
基于Contourlet变换的无参考立体图像质量评价 被引量:3
3
作者 李永生 桑庆兵 《光学技术》 CAS CSCD 北大核心 2016年第6期538-544,共7页
立体图像的景物生动逼真,给人一种身临其境的全新视觉享受,但在制作、存储和传输过程中往往会产生失真。为了评价立体图像的质量优劣,提出了一种基于轮廓波(Contourlet)变换的无参考立体图像质量评价算法。通过对失真的左、右图像分别... 立体图像的景物生动逼真,给人一种身临其境的全新视觉享受,但在制作、存储和传输过程中往往会产生失真。为了评价立体图像的质量优劣,提出了一种基于轮廓波(Contourlet)变换的无参考立体图像质量评价算法。通过对失真的左、右图像分别进行主成分分析(PCA)融合来生成新的融合图像,并使用基于SSIM(Structural Similarity)立体匹配算法生成视差图和匹配差值图,然后对上述三张图片进行Contourlet变换,再然后使用自定义的高频能量指标并结合边缘强度和信息熵,最后将得到的特征输入支持向量回归(Support Vector Regression,SVR)模型中学习,得出质量评价分数。该方法在德克萨斯大学公布的立体图像库中进行了验证,线性相关系数和斯皮尔曼相关系数在Phase I库中可高达0.957和0.947,在Phase II库中也可高达0.944和0.934,与主观评价吻合度很高,优于最新的一些评价方法。 展开更多
关键词 SSIM立体匹配 CONTOURLET变换 无参考立体图像质量评价 支持向量回归 成分分析图像融合
下载PDF
Singular value diagnosis in dam safety monitoring effect values 被引量:8
4
作者 GU ChongShi ZHAO ErFeng +1 位作者 JIN Yi SU HuaiZhi 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第5期1169-1176,共8页
Based on the principal component analysis, principal components that have major influence on data variance are determined by the energy percentage method according to the correlation between monitoring effects. Then p... Based on the principal component analysis, principal components that have major influence on data variance are determined by the energy percentage method according to the correlation between monitoring effects. Then principal components are extracted through reconstructing multi effects. Moreover, combining with the optimal estimation theory, the method of singular value diagnosis in dam safety monitoring effect values is proposed. After dam monitoring information matrix is obtained, single effect state estimation matrix and multi effect fusion estimation matrix are constructed to make diagnosis on singular values to reduce false alarm rate. And the diagnosis index is calculated by PCA. These methods have already been applied to an actual project and the result shows the ability of the monitoring effect reflecting dam evolution behavior is improved as dam safety monitoring effect fusion estimation can take accurate identification on singular values and achieve data reduction, filter out noise and lower false alarm rate effectively. 展开更多
关键词 dam safety monitoring EFFECT singular value diagnosis principal component analysis optimal estimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部