期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
衰减全反射中红外光谱测定马铃薯中可溶性蛋白含量 被引量:8
1
作者 陈美林 陈业 +2 位作者 张玉婷 宋波涛 莫开菊 《中国粮油学报》 EI CAS CSCD 北大核心 2018年第12期118-126,共9页
傅里叶变换衰减全反射红外光谱法是一种快速无损绿色的分析技术,结合化学计量学和数学建模可对混合物进行定性、定量分析。本研究利用衰减全反射中红外光谱建立测定马铃薯中可溶性蛋白含量的方法,以满足选育高蛋白质含量马铃薯的快速测... 傅里叶变换衰减全反射红外光谱法是一种快速无损绿色的分析技术,结合化学计量学和数学建模可对混合物进行定性、定量分析。本研究利用衰减全反射中红外光谱建立测定马铃薯中可溶性蛋白含量的方法,以满足选育高蛋白质含量马铃薯的快速测定,提高快速鉴定育种品系品质的目的。采用平滑降噪和导数基线矫正的方法预处理数据,选择1 700~600 cm^(-1)波段作特征光谱,提取主成分并逐步回归建模。结果表明7点平滑后一阶导数处理数据,能较准确地测定马铃薯中可溶性蛋白的含量,对于验证集的预测,其中70. 37%预测值偏差小于20%,对于鲜重蛋白质含量在5 mg/g以上的14个样品的预测,高达92. 86%预测值偏差小于20%,说明能准确快速鉴定高蛋白品系。 展开更多
关键词 衰减全反射红外光谱 主成分回归建模 可溶性蛋白质 测定 马铃薯
下载PDF
Modelling of a post-combustion CO2 capture process using extreme learning machine
2
作者 Fei Li Jie Zhang +1 位作者 Eni Oko Meihong Wang 《International Journal of Coal Science & Technology》 EI 2017年第1期33-40,共8页
This paper presents modelling of a post-combustion CO2 capture process using bootstrap aggregated extreme learning machine (ELM). ELM randomly assigns the weights between input and hidden layers and obtains the weig... This paper presents modelling of a post-combustion CO2 capture process using bootstrap aggregated extreme learning machine (ELM). ELM randomly assigns the weights between input and hidden layers and obtains the weights between the hidden layer and output layer using regression type approach in one step. This feature allows an ELM model being developed very quickly. This paper proposes using principal component regression to obtain the weights between the hidden and output layers to address the collinearity issue among hidden neuron outputs. Due to the weights between input and hidden layers are randomly assigned, ELM models could have variations in performance. This paper proposes combining multiple ELM models to enhance model prediction accuracy and reliability. To predict the CO2 production rate and CO2 capture level, eight parameters in the process were utilized as model input variables: inlet gas flow rate, CO2 concentration in inlet flow gas, inlet gas temperature, inlet gas pressure, lean solvent flow rate, Jean solvent temperature, lean loading and reboiler duty. The bootstrap re-sampling of training data was applied for building each single ELM and then the individual ELMs are stacked, thereby enhancing the model accuracy and reliability. The bootstrap aggregated extreme learning machine can provide fast learning speed and good generalization performance, which will be used to optimize the CO2 capture process. 展开更多
关键词 CO2 capture Neural networks Data-driven modelling Extreme learning machine
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部