期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于高维数据的改进CCC-GARCH模型的估计及应用 被引量:4
1
作者 刘丽萍 马丹 唐晓彬 《统计与信息论坛》 CSSCI 北大核心 2016年第9期22-28,共7页
高维数据给传统的协方差阵估计方法带来了巨大的挑战,数据维度和噪声的影响使传统的CCCGARCH模型估计起来较为困难。将主成分和门限方法有效结合,应用到CCC-GARCH模型的估计中,提出基于主成分正交补门限方法的CCC-GARCH模型(PTCCC-GARCH... 高维数据给传统的协方差阵估计方法带来了巨大的挑战,数据维度和噪声的影响使传统的CCCGARCH模型估计起来较为困难。将主成分和门限方法有效结合,应用到CCC-GARCH模型的估计中,提出基于主成分正交补门限方法的CCC-GARCH模型(PTCCC-GARCH)。PTCCC模型主要通过前K个最优主成分来刻画大维协方差阵的信息,并通过门限函数以剔除噪声的影响。通过模拟和实证研究发现:较CCCGARCH模型而言,PTCCC-GARCH模型明显提高了高维协方差阵的估计和预测效率;并且将其应用在投资组合时,投资者获得了更高的投资收益和经济福利。 展开更多
关键词 成分门限方法 成分门限CCC-GARCH模型 高维协方差阵
下载PDF
大维数据的动态条件协方差阵的估计及其应用 被引量:13
2
作者 刘丽萍 马丹 白万平 《统计研究》 CSSCI 北大核心 2015年第6期105-112,共8页
大维数据给传统的协方差阵估计方法带来了巨大的挑战,数据维度和噪声的影响不容忽视。本文将主成分和门限方法有效结合,应用到DCC模型的估计中,提出了基于主成分正交补门限方法的DCC模型(poet DCC)。poet DCC模型主要通过前K个主成分来... 大维数据给传统的协方差阵估计方法带来了巨大的挑战,数据维度和噪声的影响不容忽视。本文将主成分和门限方法有效结合,应用到DCC模型的估计中,提出了基于主成分正交补门限方法的DCC模型(poet DCC)。poet DCC模型主要通过前K个主成分来刻画高维动态条件协方差阵的信息,然后将门限函数应用在矩阵的正交补中,有效地降低了数据的维度并剔除了噪声的影响。通过模拟和实证研究发现:较DCC模型而言,poet DCC模型明显提高了高维协方差阵的估计和预测效率;并且将其应用在投资组合时,投资者获得了更高的投资收益和经济福利。 展开更多
关键词 成分 门限方法 主成分正交补门限dcc模型 高维协方差阵
下载PDF
金融高维协方差阵的估计及其应用 被引量:1
3
作者 刘丽萍 《统计与决策》 CSSCI 北大核心 2016年第9期44-47,共4页
文章克服了传统高维协方差阵估计方法的缺点,将主成分和门限方法相结合,提出了门限主成分正交补(TPO)估计量,该估计量主要通过前K个主成分来刻画高维协方差阵的信息,通过引入合适的门限函数来对矩阵的正交补进行稀疏估计,从而有效的降... 文章克服了传统高维协方差阵估计方法的缺点,将主成分和门限方法相结合,提出了门限主成分正交补(TPO)估计量,该估计量主要通过前K个主成分来刻画高维协方差阵的信息,通过引入合适的门限函数来对矩阵的正交补进行稀疏估计,从而有效的降低了数据的维度并剔除了噪声的影响。模拟和实证研究发现:较严格的因子(SFM)模型而言,门限主成分正交补(TPO)模型明显提高了协方差阵的估计效率,并且将其应用在投资组合时,投资者获得了更高的收益和经济福利。 展开更多
关键词 门限成分模型 成分分析法 门限方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部