Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out tru...Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out true triaxial tests on siltstone specimen. It is shown that peak strength of siltstone specimen increases firstly and subsequently decreases with the increase of the intermediate principal stress. And its turning point is related to the minimum principal stress and the direction of the intermediate principal stress. Failure characteristic(brittleness or ductility) of siltstone is determined by the minimum principal stress and the difference between the intermediate and minimum principal stress. The intermediate principal stress has a significant effect on the types and distributions of microcracks. The failure modes of the specimen are determined by the magnitude and direction of the intermediate principal stress, and related to weakening effect of the opening and inhibition effect of confining pressure in essence: when weakening effect of the opening is greater than inhibition effect of confining pressure, the failure surface is parallel to the x axis(such as σ2=σ3=0 MPa); conversely, the failure surface is parallel to the z axis(such as σ2=20 MPa, σ3=0 MPa).展开更多
Rock pillar is the key supporting component in underground engineering.During an earthquake,the key rock pillar must bear both the seismic load and the load transferred from other damaged pillars.This paper attempts t...Rock pillar is the key supporting component in underground engineering.During an earthquake,the key rock pillar must bear both the seismic load and the load transferred from other damaged pillars.This paper attempts to reveal the influence of the mainshock on damage evolution and failure characteristic of the key rock pillar during aftershocks by cyclic loading test of marble.Four levels of pre-damage stress(i.e.,10,30,50 and 70 MPa)in the first cycle were used to simulate the mainshock damage,and then cyclic stress with the same amplitude(namely 10 MPa)was conducted in the subsequent cycles to simulate the aftershock until rock failure.The results indicate that the presence of pre-damage has an obvious weakening effect on the bearing capacity and deformation resistance of rock materials during the aftershock process.Besides,the increase of pre-damage significantly changes the final failure pattern of the key rock pillar,and leads to an increase in the proportion of small-scale rock fragments.This study may contribute to understanding the seismic capacity of the unreinforced rock pillar during mainshock-aftershock seismic sequences and to optimizing the design of the key rock pillar in underground engineering.展开更多
基金Project(51021004)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out true triaxial tests on siltstone specimen. It is shown that peak strength of siltstone specimen increases firstly and subsequently decreases with the increase of the intermediate principal stress. And its turning point is related to the minimum principal stress and the direction of the intermediate principal stress. Failure characteristic(brittleness or ductility) of siltstone is determined by the minimum principal stress and the difference between the intermediate and minimum principal stress. The intermediate principal stress has a significant effect on the types and distributions of microcracks. The failure modes of the specimen are determined by the magnitude and direction of the intermediate principal stress, and related to weakening effect of the opening and inhibition effect of confining pressure in essence: when weakening effect of the opening is greater than inhibition effect of confining pressure, the failure surface is parallel to the x axis(such as σ2=σ3=0 MPa); conversely, the failure surface is parallel to the z axis(such as σ2=20 MPa, σ3=0 MPa).
基金Project(2022MD713784) supported by China Postdoctoral ScienceProject (1960321032) supported by the Research Start-up Fund Project for High-level Talents Introduction,ChinaProject (1609722058) supported by Xi’ an University of Architecture and Technology,China。
文摘Rock pillar is the key supporting component in underground engineering.During an earthquake,the key rock pillar must bear both the seismic load and the load transferred from other damaged pillars.This paper attempts to reveal the influence of the mainshock on damage evolution and failure characteristic of the key rock pillar during aftershocks by cyclic loading test of marble.Four levels of pre-damage stress(i.e.,10,30,50 and 70 MPa)in the first cycle were used to simulate the mainshock damage,and then cyclic stress with the same amplitude(namely 10 MPa)was conducted in the subsequent cycles to simulate the aftershock until rock failure.The results indicate that the presence of pre-damage has an obvious weakening effect on the bearing capacity and deformation resistance of rock materials during the aftershock process.Besides,the increase of pre-damage significantly changes the final failure pattern of the key rock pillar,and leads to an increase in the proportion of small-scale rock fragments.This study may contribute to understanding the seismic capacity of the unreinforced rock pillar during mainshock-aftershock seismic sequences and to optimizing the design of the key rock pillar in underground engineering.