In this paper, we demonstrate that controlled dopantoncentration is an essential issue for charge carriers transporting in red Phosphorescent Organic Light-Emitting Device (PHOLED). Carriers transport via dopant mol...In this paper, we demonstrate that controlled dopantoncentration is an essential issue for charge carriers transporting in red Phosphorescent Organic Light-Emitting Device (PHOLED). Carriers transport via dopant molecules in the emitting layer with a single host, however, via both dopant and host molecules when their energy levels are well aligned. Conditions for reduced driving-voltage and enhanced efficiency of red PHOLED are obtained by employing a mixed host structure. A pure red PHOLED with color coordinates of (0.67, 0.33) has been realized by using only 4 wt% dopant, The device achieves 100 cd/cm2 at 2.9 V, with correspond- ing power efficiency of 9.3im/W and external quantum efficiency of 14.3%.展开更多
An analytical study was presented on active control of sound transmission into a vibro-acoustic enclosure comprising two flexible plates. Two types of actuators were used, i.e. acoustic actuator and distributed lead z...An analytical study was presented on active control of sound transmission into a vibro-acoustic enclosure comprising two flexible plates. Two types of actuators were used, i.e. acoustic actuator and distributed lead zirconate titanate piezoelectric (PZT) actuator instead of point force actuator. Using the modal acoustic transfer impedance-mobility matrices, the excitation and interaction in the coupled sound transmission system can be described with clear physical significance. With the control system designed to globally reduce the sound field, different control system configurations were considered, including the structural actuator on the incident plate, actuator on the receiving plate, acoustic actuator on the cavity, and their combinations. The effectiveness and performance of the control strategy corresponding to each system configuration were compared and discussed. The role and control mechanism of each type of actuator were of particular interest. It was shown that the incident plate actuator is effective in controlling the cavity-dominated modes and the structural modes dominated by the incident plate and receiving plate. Two main control mechanisms are involved in this control configuration, i.e., modal suppressing and modal rearrangement. For control system configuration with only acoustic actuator in the enclosure, the mechanism involved in this arrangement is purely modal suppression. Desirable placements of structural actuators in terms of total potential energy reduction were also discussed.展开更多
基金the National Hi-Tech Research and Development Program of China,the Ministry of Science and Technology of China,the National Natural Science Foundation of China,the Research Fund for the Doctoral Program of Higher Education,the Scientific and Technological Developing Scheme of Jilin Province
文摘In this paper, we demonstrate that controlled dopantoncentration is an essential issue for charge carriers transporting in red Phosphorescent Organic Light-Emitting Device (PHOLED). Carriers transport via dopant molecules in the emitting layer with a single host, however, via both dopant and host molecules when their energy levels are well aligned. Conditions for reduced driving-voltage and enhanced efficiency of red PHOLED are obtained by employing a mixed host structure. A pure red PHOLED with color coordinates of (0.67, 0.33) has been realized by using only 4 wt% dopant, The device achieves 100 cd/cm2 at 2.9 V, with correspond- ing power efficiency of 9.3im/W and external quantum efficiency of 14.3%.
基金Supported by the National Natural Science Foundation of China (No.10802024)Research Fund for the Doctoral Program of Higher Education of China (No. 200802171009)+1 种基金Innovative Talents Fund of Harbin (No.2009RFQXG211)Fundamental Research Fund of HEU (No. HEUFT08003)
文摘An analytical study was presented on active control of sound transmission into a vibro-acoustic enclosure comprising two flexible plates. Two types of actuators were used, i.e. acoustic actuator and distributed lead zirconate titanate piezoelectric (PZT) actuator instead of point force actuator. Using the modal acoustic transfer impedance-mobility matrices, the excitation and interaction in the coupled sound transmission system can be described with clear physical significance. With the control system designed to globally reduce the sound field, different control system configurations were considered, including the structural actuator on the incident plate, actuator on the receiving plate, acoustic actuator on the cavity, and their combinations. The effectiveness and performance of the control strategy corresponding to each system configuration were compared and discussed. The role and control mechanism of each type of actuator were of particular interest. It was shown that the incident plate actuator is effective in controlling the cavity-dominated modes and the structural modes dominated by the incident plate and receiving plate. Two main control mechanisms are involved in this control configuration, i.e., modal suppressing and modal rearrangement. For control system configuration with only acoustic actuator in the enclosure, the mechanism involved in this arrangement is purely modal suppression. Desirable placements of structural actuators in terms of total potential energy reduction were also discussed.