[Objective] The genetic diversity of major mango cultivars in China was analyzed by using SSR markers, and their fingerprints were constructed so as to provide theoretical basis for germplasm innovation and breeding o...[Objective] The genetic diversity of major mango cultivars in China was analyzed by using SSR markers, and their fingerprints were constructed so as to provide theoretical basis for germplasm innovation and breeding of mango. [Method] With 115 pairs of SSR primers, genetic diversity analysis and cluster analysis were performed for 30 mango cultivars, among which the genetic relationships were analyzed. [Result] Total 64 pairs of polymorphic primers were screened out from the 115 pairs of primers, and total 343 bands were amplified from the 30 cultivars with 73.2% of polymorphic bands. On average, 3.9 allelic loci were detected for each pair of primers with genetic diversity index of 0.5, Shannon's diversity index of 1.00 and polymorphism information content of 0.49, indicating higher genetic diversity. The cluster analysis showed that the 30 major cultivars could be classified into four categories. The first category included 14 cultivars; the second category included 11 cultivars, most of which were introduced from abroad; the third category included 4 cultivars, Le., Miansan, Parayinda, Baiyu and Hongxiangya: the fourth category included only one cultivar Maqiesu.By using 7 pairs of SSR markers, i.e., M42, M49, M54, M55, M96, M99 and M103, digital fingerprints were constructed for the 30 mango cultivars. [Conclusion] The 30 mango cultivars present more complex genomic genetics and abundant genetic information, and they have higher genetic diversity.展开更多
基金Supported by Natural Science Foundation of Hainan Province(34128)Fundamental Scientific Research Funds of Chinese Academy of Tropical Agricultural Sciences(1630032013031)~~
文摘[Objective] The genetic diversity of major mango cultivars in China was analyzed by using SSR markers, and their fingerprints were constructed so as to provide theoretical basis for germplasm innovation and breeding of mango. [Method] With 115 pairs of SSR primers, genetic diversity analysis and cluster analysis were performed for 30 mango cultivars, among which the genetic relationships were analyzed. [Result] Total 64 pairs of polymorphic primers were screened out from the 115 pairs of primers, and total 343 bands were amplified from the 30 cultivars with 73.2% of polymorphic bands. On average, 3.9 allelic loci were detected for each pair of primers with genetic diversity index of 0.5, Shannon's diversity index of 1.00 and polymorphism information content of 0.49, indicating higher genetic diversity. The cluster analysis showed that the 30 major cultivars could be classified into four categories. The first category included 14 cultivars; the second category included 11 cultivars, most of which were introduced from abroad; the third category included 4 cultivars, Le., Miansan, Parayinda, Baiyu and Hongxiangya: the fourth category included only one cultivar Maqiesu.By using 7 pairs of SSR markers, i.e., M42, M49, M54, M55, M96, M99 and M103, digital fingerprints were constructed for the 30 mango cultivars. [Conclusion] The 30 mango cultivars present more complex genomic genetics and abundant genetic information, and they have higher genetic diversity.