This paper studies the micro-cutting characteristics of aluminum alloy (2A12) based on a series of orthogonal experiments and finite element method (FEM) simulations. An energy-based ductile failure law was proposed i...This paper studies the micro-cutting characteristics of aluminum alloy (2A12) based on a series of orthogonal experiments and finite element method (FEM) simulations. An energy-based ductile failure law was proposed in the FEM simulation. The simulated cutting forces and chip morphology were compared with experimental results. The simulation result indicates that there is a close relationship between the cutting force and cutting heat. The micro-cutting force decreases as the heat flux vector increases. Both the cutting heat and the micro-cutting force need a finite time to achieve a steady state. It is observed that with the cutting speed of 169.95 m/min and uncut chip thickness of 6 μm, the heat flux vector in the workpiece increases to a stable value after 0.06 ms; meanwhile, the principal cutting force decreases to a steady state correspondingly, i.e., the micro-cutting process achieves the steady state. It is concluded that the steady state micro-cutting simulation can reflect the cutting process accurately.展开更多
In this paper we study the stability analysis of two within-host Chikungunya virus (CHIKV) dynamics models. The incidence rate between the CHIKV and the uninfected mouocytes is modeled by a general nonlinear functio...In this paper we study the stability analysis of two within-host Chikungunya virus (CHIKV) dynamics models. The incidence rate between the CHIKV and the uninfected mouocytes is modeled by a general nonlinear function. The second model considers two types of infected monocytes (i) latently infected monocytes which do not generate CHIKV and (ii) actively infected monocytes which produce the CHIKV particles. Sufficient conditions are found which guarantee the global stability of the positive steady states. Using the Lyapunov function, we established the global stability of the steady states of the models. The theoretical results are confirmed by numerical simulations.展开更多
基金Supported by the National High Technology Research and Development Program of China ("863" Program, No.2008AA042509)
文摘This paper studies the micro-cutting characteristics of aluminum alloy (2A12) based on a series of orthogonal experiments and finite element method (FEM) simulations. An energy-based ductile failure law was proposed in the FEM simulation. The simulated cutting forces and chip morphology were compared with experimental results. The simulation result indicates that there is a close relationship between the cutting force and cutting heat. The micro-cutting force decreases as the heat flux vector increases. Both the cutting heat and the micro-cutting force need a finite time to achieve a steady state. It is observed that with the cutting speed of 169.95 m/min and uncut chip thickness of 6 μm, the heat flux vector in the workpiece increases to a stable value after 0.06 ms; meanwhile, the principal cutting force decreases to a steady state correspondingly, i.e., the micro-cutting process achieves the steady state. It is concluded that the steady state micro-cutting simulation can reflect the cutting process accurately.
文摘In this paper we study the stability analysis of two within-host Chikungunya virus (CHIKV) dynamics models. The incidence rate between the CHIKV and the uninfected mouocytes is modeled by a general nonlinear function. The second model considers two types of infected monocytes (i) latently infected monocytes which do not generate CHIKV and (ii) actively infected monocytes which produce the CHIKV particles. Sufficient conditions are found which guarantee the global stability of the positive steady states. Using the Lyapunov function, we established the global stability of the steady states of the models. The theoretical results are confirmed by numerical simulations.