期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
水深测量作业中的测线布设与实施策略研究 被引量:10
1
作者 柴进柱 《海洋测绘》 2013年第3期43-46,共4页
检查线是水深成果质量检验与可靠性评估主要手段。在全面梳理国内外海道测量机构有关水深测线布设和实施的技术要求基础上,重点针对检查线的布设方法和实施检查线测量的时机选择进行系统研究,提出在水深测量实施过程中,主、检线布设的... 检查线是水深成果质量检验与可靠性评估主要手段。在全面梳理国内外海道测量机构有关水深测线布设和实施的技术要求基础上,重点针对检查线的布设方法和实施检查线测量的时机选择进行系统研究,提出在水深测量实施过程中,主、检线布设的具体要求和实施策略,以期为实际测深作业提供理论依据和技术方法支持。 展开更多
关键词 水深 线布设 主测线 检查线 实施策略
下载PDF
航空重力测量的测线设计 被引量:4
2
作者 石磐 孙中苗 《解放军测绘研究所学报》 2003年第2期5-8,共4页
测线设计是航空重力测量一项十分重要的技术工作。测线布设的基本依据是对测区推求平均重力异常精度和分辨率的要求。其主要内容包括:航高和航速设计,测线间距,主、副测线布设,测线长度等。本文对此作了详细讨论,并得出若干初步结论。
关键词 航空重力 飞行高度 飞行速度 主测线 线
下载PDF
无人船与机载雷达技术在水下地形测绘中应用
3
作者 孙海广 《测绘科学技术》 2023年第4期327-333,共7页
针对地上河流的水资源对经济发展所起的作用日益增加,对河流水资源的开发、治理等工作变得尤为重要。随着科学技术的发展,单波束技术、多波束技术,激光雷达技术的融合实现了水下地形测绘任务。依托河流某一项目,证明了这几种技术在获取... 针对地上河流的水资源对经济发展所起的作用日益增加,对河流水资源的开发、治理等工作变得尤为重要。随着科学技术的发展,单波束技术、多波束技术,激光雷达技术的融合实现了水下地形测绘任务。依托河流某一项目,证明了这几种技术在获取水下地形数据方面的可行性,并依托该项目系统地介绍了水下测绘的完整流程。并为大规模开展类似项目提供参考依据。 展开更多
关键词 单波束技术 多波束技术 激光雷达 主测线
下载PDF
基于GNSS的单波束测深系统在大中型水库水下地形测量中的应用 被引量:10
4
作者 商建伟 《山东国土资源》 2022年第1期65-69,共5页
随着水库在经济社会发展中所起的作用日趋明显,对水库的开发、治理更加重视,获取高精度的水库水下地形数据变得更加急迫。随着测深技术、差分GNSS技术以及姿态传感器的不断发展,基于GNSS的测深系统为水下地形测量提供了全新的解决方案... 随着水库在经济社会发展中所起的作用日趋明显,对水库的开发、治理更加重视,获取高精度的水库水下地形数据变得更加急迫。随着测深技术、差分GNSS技术以及姿态传感器的不断发展,基于GNSS的测深系统为水下地形测量提供了全新的解决方案。通过合理规划测线,经过声速改正、吃水改正,利用船载GNSS导航定位和测深仪采集测深数据,经转化处理后快速生成水下地形测量成果。本文依托山东省东平湖水库,探索研究基于山东省卫星定位连续运行综合应用服务系统(以下简称SDCORS)及似大地水准面精化模型开展空间三维坐标定位,采用单波束测深仪进行水深测量,经数据处理生成水下高程点及数字高程模型的技术方法及解决方案,为大规模开展此类项目提供参考依据。 展开更多
关键词 GNSS 水深 单波束 主测线 大中型水库
下载PDF
《地震相分析》讲座(三) 第三章 地震相分析方法 被引量:3
5
作者 王英民 《沉积与特提斯地质》 CAS CSCD 1991年第4期46-52,共7页
一、地震相划分所谓地震相划分就是在地震地层单元内部,根椐地震相标志划分出不同的地震相单元,从而为地震相分析,即根据地震相特征进行沉积相的解释推断,打下必要基础。根据在划分时所利用的地震相标志的不同,可分为单因素划分和综合... 一、地震相划分所谓地震相划分就是在地震地层单元内部,根椐地震相标志划分出不同的地震相单元,从而为地震相分析,即根据地震相特征进行沉积相的解释推断,打下必要基础。根据在划分时所利用的地震相标志的不同,可分为单因素划分和综合划分两种不同方法。 1.单因素划分这种方法在划分时每次都只考虑一种地震相标志。例如根据地震反对构造进行地震相划分或根据振幅进行地震相划分等,由此编制出各单一地震相标志的相图。 展开更多
关键词 地震相分析 地层单元 地震资料 几何地震学 钻井资料 盆地沉积 岩相 时间剖面 主测线 水平叠加
下载PDF
Numerical analysis of turbulent mixed convection air flow in inclined plane channel with k-εtype turbulence model 被引量:1
6
作者 XIE Zhengrui YANG Yanhua GU Hanyang CHENG Xu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2008年第2期121-128,共8页
Numerical study on turbulent mixed convection in inclined plane channels,from 15° to 90° (vertical),was carried out to examine the effect of inclination on fluid flow and heat transfer distributions.The turb... Numerical study on turbulent mixed convection in inclined plane channels,from 15° to 90° (vertical),was carried out to examine the effect of inclination on fluid flow and heat transfer distributions.The turbulent air flows upward or downward into the duct with one wall heated from bottom.Calculation results with several kinds of k-εtype turbulence models were used to compare the experimental data with those in literatures to determine suitable model.The dependents of Nusselt number on the inclination angle of both the buoyancy-aided and buoyancy-opposed flow are discussed. 展开更多
关键词 混合对流 k-ε模型 湍流模型 主测线渠道
下载PDF
Statistical Monitoring of Chemical Processes Based on Sensitive Kernel Principal Components 被引量:10
7
作者 JIANG Qingchao YAN Xuefeng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第6期633-643,共11页
The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but m... The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error SVE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation di rectly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly. 展开更多
关键词 statistical process monitoring kernel principal component analysis sensitive kernel principal compo-nent Tennessee Eastman process
下载PDF
Ultimate Strength Assessment of a Tanker Hull Based on Experimentally Developed Master Curves 被引量:1
8
作者 Mingcai Xu Y. Garbatov C. Guedes Soares 《Journal of Marine Science and Application》 2013年第2期127-139,共13页
A geometrically similar scaling was made from small-scale specimen to full-scale stiffened panels and then their collapse behaviour is investigated. It is considered that the stiffened panel compressive ultimate stren... A geometrically similar scaling was made from small-scale specimen to full-scale stiffened panels and then their collapse behaviour is investigated. It is considered that the stiffened panel compressive ultimate strength test was designed according to geometrical scaling laws so that the output of the test could be used as representative of the stiffened panels of the compressive zone of a tanker hull subjected to vertical bending moment. The ultimate strength of a tanker hull is analysed by a FE analysis using the experimentally developed master stress-strain curves which are obtained by the beam tension test and the compressive test of the stiffened panel, and are then compared with the result achieved by the progressive collapse method. 展开更多
关键词 ship hull tanker hull stiffened panel ultimate strength scaling laws similitude analysis
下载PDF
Reconstruction based approach to sensor fault diagnosis using auto-associative neural networks 被引量:4
9
作者 Mousavi Hamidreza Shahbazian Mehdi +1 位作者 Jazayeri-Rad Hooshang Nekounam Aliakbar 《Journal of Central South University》 SCIE EI CAS 2014年第6期2273-2281,共9页
Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal ... Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal component analysis(NLPCA)should be applied.In this work,NLPCA based on auto-associative neural network(AANN)was applied to model a chemical process using historical data.First,the residuals generated by the AANN were used for fault detection and then a reconstruction based approach called enhanced AANN(E-AANN)was presented to isolate and reconstruct the faulty sensor simultaneously.The proposed method was implemented on a continuous stirred tank heater(CSTH)and used to detect and isolate two types of faults(drift and offset)for a sensor.The results show that the proposed method can detect,isolate and reconstruct the occurred fault properly. 展开更多
关键词 fault diagnosis nonlinear principal component analysis auto-associative neural networks
下载PDF
Soft sensor design for hydrodesulfurization process using support vector regression based on WT and PCA 被引量:2
10
作者 Saeid Shokri Mohammad Taghi Sadeghi +1 位作者 Mahdi Ahmadi Marvast Shankar Narasimhan 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期511-521,共11页
A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support ... A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support vector regression(SVR) based on wavelet transform(WT) and principal component analysis(PCA) was used. Experimental data from the HDS setup were employed to validate the proposed model. The results reveal that the integrated WT-PCA with SVR model was able to increase the prediction accuracy of SVR model. Implementation of the proposed model delivers the best satisfactory predicting performance(EAARE=0.058 and R2=0.97) in comparison with SVR. The obtained results indicate that the proposed model is more reliable and more precise than the multiple linear regression(MLR), SVR and PCA-SVR. 展开更多
关键词 soft sensor support vector regression principal component analysis wavelet transform hydrodesulfurization process
下载PDF
The progress of technology and application of isotopic neutron-source well logging in China
11
作者 Zhang Feng Yuan Chao Wang Xinguang Huang Longji 《Engineering Sciences》 EI 2009年第4期35-44,50,共11页
Isotopic neutron-source logging plays a great role in oil field exploration and development.Several isotopic neutron logging methods which detect gamma ray and neutron are summarized.It's introduced that the isoto... Isotopic neutron-source logging plays a great role in oil field exploration and development.Several isotopic neutron logging methods which detect gamma ray and neutron are summarized.It's introduced that the isotopic neutron logging tool import,independently develop,numerical simulate,data process and apply in China.Therefore,the prospect of neutron logging technology in future was pointed out. 展开更多
关键词 isotopic neutron source neutron logging PETROLEUM
下载PDF
A new image processing method for discriminating internal layers from radio echo sounding data of ice sheets via a combined robust principal component analysis and total variation approach 被引量:2
12
作者 LANG ShiNan ZHAO Bo +1 位作者 LIU XiaoJun FANG GuangYou 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第4期838-846,共9页
Discriminating internal layers by radio echo sounding is important in analyzing the thickness and ice deposits in the Antarctic ice sheet.The signal processing method of synthesis aperture radar(SAR)has been widely us... Discriminating internal layers by radio echo sounding is important in analyzing the thickness and ice deposits in the Antarctic ice sheet.The signal processing method of synthesis aperture radar(SAR)has been widely used for improving the signal to noise ratio(SNR)and discriminating internal layers by radio echo sounding data of ice sheets.This method is not efficient when we use edge detection operators to obtain accurate information of the layers,especially the ice-bed interface.This paper presents a new image processing method via a combined robust principal component analysis-total variation(RPCA-TV)approach for discriminating internal layers of ice sheets by radio echo sounding data.The RPCA-based method is adopted to project the high-dimensional observations to low-dimensional subspace structure to accelerate the operation of the TV-based method,which is used to discriminate the internal layers.The efficiency of the presented method has been tested on simulation data and the dataset of the Institute of Electronics,Chinese Academy of Sciences,collected during CHINARE 28.The results show that the new method is more efficient than the previous method in discriminating internal layers of ice sheets by radio echo sounding data. 展开更多
关键词 robust principal component analysis (RPCA) total variation (TV) discriminating internal layers from radio echo sounding data of ice sheets conjugate gradient method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部