核函数主元分析KPCA(kernel princ ipal component analysis)能够提取机械故障信号的非线性特征,可以应用于机械故障状态识别。但是KPCA是一种无监督的特征提取方法,不能利用故障信号中的类别信息。本文介绍了一种核最优K-L变换,它可以...核函数主元分析KPCA(kernel princ ipal component analysis)能够提取机械故障信号的非线性特征,可以应用于机械故障状态识别。但是KPCA是一种无监督的特征提取方法,不能利用故障信号中的类别信息。本文介绍了一种核最优K-L变换,它可以充分利用类别信息,它能够提取类平均向量和方差向量中的判别信息,使提取的特征分类效果更好。在齿轮故障诊断实验中,采用核最优K-L变换提取故障信号的非线性特征,实验结果表明核最优K-L变换相比KPCA故障识别结果更为理想。展开更多
为了进一步提高焊接缺陷识别的准确度和效率,提出了一种基于Contourlet变换和混沌粒子群优化核主成分分析(kernel principal component analysis,KPCA)的焊接缺陷图像特征提取方法.首先通过Contourlet变换将焊接缺陷图像进行多尺度分解...为了进一步提高焊接缺陷识别的准确度和效率,提出了一种基于Contourlet变换和混沌粒子群优化核主成分分析(kernel principal component analysis,KPCA)的焊接缺陷图像特征提取方法.首先通过Contourlet变换将焊接缺陷图像进行多尺度分解,提取低频分量和特定方向上的高频分量;然后运用混沌粒子群优化后的KPCA分别提取缺陷训练样本和缺陷测试样本的特征;最后根据测试样本特征与训练样本特征之间的欧式距离确定缺陷测试样本的类型.结果表明,与基于核主成分分析特征提取法、基于小波的核主成分分析特征提取法相比,文中方法提取的特征更为完整,识别率更高,运行速度较快.展开更多
文摘核函数主元分析KPCA(kernel princ ipal component analysis)能够提取机械故障信号的非线性特征,可以应用于机械故障状态识别。但是KPCA是一种无监督的特征提取方法,不能利用故障信号中的类别信息。本文介绍了一种核最优K-L变换,它可以充分利用类别信息,它能够提取类平均向量和方差向量中的判别信息,使提取的特征分类效果更好。在齿轮故障诊断实验中,采用核最优K-L变换提取故障信号的非线性特征,实验结果表明核最优K-L变换相比KPCA故障识别结果更为理想。
文摘为了进一步提高焊接缺陷识别的准确度和效率,提出了一种基于Contourlet变换和混沌粒子群优化核主成分分析(kernel principal component analysis,KPCA)的焊接缺陷图像特征提取方法.首先通过Contourlet变换将焊接缺陷图像进行多尺度分解,提取低频分量和特定方向上的高频分量;然后运用混沌粒子群优化后的KPCA分别提取缺陷训练样本和缺陷测试样本的特征;最后根据测试样本特征与训练样本特征之间的欧式距离确定缺陷测试样本的类型.结果表明,与基于核主成分分析特征提取法、基于小波的核主成分分析特征提取法相比,文中方法提取的特征更为完整,识别率更高,运行速度较快.