期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
主目标分析法对中缅铁路走向进行抉择 被引量:3
1
作者 彭永岸 王云鹏 《热带地理》 北大核心 1995年第3期193-201,共9页
本文通过对比分析,采用主目标分析法,科学地确定中缅铁路的走向和路线,认为此线的选择是开拓西向南亚大市场的捷径新通道,同时也是兼顾滇西南经济发展的最佳决策.
关键词 中缅铁路 走向 决策 主目标分析法 铁路 选线
下载PDF
Research on weak signal extraction and noise removal for GPR data based on principal component analysis 被引量:1
2
作者 CHEN Lingna ZENG Zhaofa +1 位作者 LI Jing YUAN Yuan 《Global Geology》 2015年第3期196-202,共7页
The ground penetrating radar (GPR) detection data is a wide band signal, always disturbed by some noise, such as ambient random noise and muhiple refleetion waves. The noise affects the target identification of unde... The ground penetrating radar (GPR) detection data is a wide band signal, always disturbed by some noise, such as ambient random noise and muhiple refleetion waves. The noise affects the target identification of underground medium seriously. A method based on principal component analysis (PCA) was proposed to ex- tract the target signal and remove the uncorrelated noise. According to the correlation of signal, the authors get the eigenvalues and corresponding eigenvectors by decomposing the covariance matrix of GPR data and make linear transformation for the GPR data to get the principal components (PCs). The lower-order PCs stand h^r the strong correlated target signals of the raw data, and the higher-order ones present the uneorrelated noise. Thus the authors can extract the target signal and filter uncorrelated noise effectively by the PCA. This method was demonstrated on real ultra-wideband through-wall radar data and simulated GPR data. Both of the results show that the PCA method can effectively extract the GPR target signal and remove the uncorrelated noise. 展开更多
关键词 ground penetrating radar principal component analysis target extraction noise removing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部