[Objective] The aim was to investigate the genetic diversity of the main commercial varieties of Brassica napus in Guizhou Province at the molecular level. [Method] Nine main commercial rapeseed cultivars in Guizhou w...[Objective] The aim was to investigate the genetic diversity of the main commercial varieties of Brassica napus in Guizhou Province at the molecular level. [Method] Nine main commercial rapeseed cultivars in Guizhou were detected by 40 pairs of SSR primers used in the national regional trial of B. napus, and then clus-tering analysis was carried out. [Result] A total of 191 bands were amplified, and 143 (accounting for 75%) of them showed polymorphism among the nine rapeseed cultivars. By cluster analysis, the nine cultivars were divided into two groups. Group A included seven varieties, and group B consisted of two cultivars from Guizhou In-stitute of Oil Crops. The cultivars in group A were further divided into sub-groups A1 and A2 at the similarity coefficient of 0.643 4. Sub-group A1 included three culti-vars from Guizhou Rapeseed Institute, and sub-group A2 included the other four cultivars from Guizhou Institute of Oil Crops. [Conclusion] The cultivars bred by the same institute had similar genetic background. The cultivars from Guizhou Institute of Oil Crops showed wider genetic basis. However, the genetic similarity coefficient between Qianyou 17 and Qianyou 29 was up to 0.87, suggesting that they shared closer genetic basis.展开更多
基金Supported by Special Fund for Seed Breeding from Guizhou Provincial Agricultural Committee[(2012)026]Agricultural Science and Technology Research Program of Department of Science and Technology of Guizhou Province[(2013)3003]+1 种基金Agricultural Science and Technology Research Program of Department of Science and Technology of Guizhou Province[(2013)3088]a grant from the Central Authorities of China for Supporting Local Platform Construction[(2011)4001]~~
文摘[Objective] The aim was to investigate the genetic diversity of the main commercial varieties of Brassica napus in Guizhou Province at the molecular level. [Method] Nine main commercial rapeseed cultivars in Guizhou were detected by 40 pairs of SSR primers used in the national regional trial of B. napus, and then clus-tering analysis was carried out. [Result] A total of 191 bands were amplified, and 143 (accounting for 75%) of them showed polymorphism among the nine rapeseed cultivars. By cluster analysis, the nine cultivars were divided into two groups. Group A included seven varieties, and group B consisted of two cultivars from Guizhou In-stitute of Oil Crops. The cultivars in group A were further divided into sub-groups A1 and A2 at the similarity coefficient of 0.643 4. Sub-group A1 included three culti-vars from Guizhou Rapeseed Institute, and sub-group A2 included the other four cultivars from Guizhou Institute of Oil Crops. [Conclusion] The cultivars bred by the same institute had similar genetic background. The cultivars from Guizhou Institute of Oil Crops showed wider genetic basis. However, the genetic similarity coefficient between Qianyou 17 and Qianyou 29 was up to 0.87, suggesting that they shared closer genetic basis.