[目的/意义]如何挖掘海量学术论文中的研究主题,梳理研究主题的演化脉络和关联关系,预测主题前沿热点,对掌握科技竞争先机至关重要。[方法/过程]针对当前主题关联和预测研究中存在的不足,提出基于隐含狄利克雷(Latent Dirichlet allocat...[目的/意义]如何挖掘海量学术论文中的研究主题,梳理研究主题的演化脉络和关联关系,预测主题前沿热点,对掌握科技竞争先机至关重要。[方法/过程]针对当前主题关联和预测研究中存在的不足,提出基于隐含狄利克雷(Latent Dirichlet allocation,LDA)和长短期记忆(Long Short Term Memory,LSTM)模型的研究关联与预测方法,首先基于生命周期理论划分多时序窗口,并利用LDA主题模型挖掘学术文献中的隐性研究主题,分析主题间的关联关系;基于主题预测指标的时间序列特征,运用LSTM模型对主题研究的发展趋势和研究热点进行预测,并结合基金立项和论文发表情况对预测结果进行定性修正。[结果/结论]案例分析结果表明,本文方法可以准确挖掘研究主题,分析主题关联关系,对研究主题研究走势和热点的预测具有实用价值。展开更多
文摘[目的/意义]如何挖掘海量学术论文中的研究主题,梳理研究主题的演化脉络和关联关系,预测主题前沿热点,对掌握科技竞争先机至关重要。[方法/过程]针对当前主题关联和预测研究中存在的不足,提出基于隐含狄利克雷(Latent Dirichlet allocation,LDA)和长短期记忆(Long Short Term Memory,LSTM)模型的研究关联与预测方法,首先基于生命周期理论划分多时序窗口,并利用LDA主题模型挖掘学术文献中的隐性研究主题,分析主题间的关联关系;基于主题预测指标的时间序列特征,运用LSTM模型对主题研究的发展趋势和研究热点进行预测,并结合基金立项和论文发表情况对预测结果进行定性修正。[结果/结论]案例分析结果表明,本文方法可以准确挖掘研究主题,分析主题关联关系,对研究主题研究走势和热点的预测具有实用价值。