期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向新词义原推荐的相似性判别方法
1
作者 白宇 田雨 +1 位作者 王之光 张桂平 《中文信息学报》 CSCD 北大核心 2024年第1期36-44,共9页
义原(Sememe)是构成《知网》(HowNet)概念描述的核心部件,新词概念描述义原的推荐是HowNet自动或半自动扩展中涉及的关键问题。面向新词义原推荐,该文提出一种融合义原注意力的预训练语言模型优化方法——SaBERT。在判别新词与HowNet词... 义原(Sememe)是构成《知网》(HowNet)概念描述的核心部件,新词概念描述义原的推荐是HowNet自动或半自动扩展中涉及的关键问题。面向新词义原推荐,该文提出一种融合义原注意力的预训练语言模型优化方法——SaBERT。在判别新词与HowNet词表词之间的语义相似性的过程中,该方法利用词表词已知概念描述义原序列的注意力分布,以相似性同构为目标,对基于BERT+CNN的相似性判别模型进行优化,从而为义原推荐任务提供相似概念集合。实验结果表明,采用SaBERT可以有效解决未登录词与词表词的相似性判别问题,准确率、召回率、F1值分别达到0.8314、0.8007和0.8158。在基于协同过滤框架的义原推荐任务上进行的实验表明,相似性同构程度与义原推荐效果正相关,说明该文方法能够有效解决候选义原选择问题。 展开更多
关键词 义原推荐 相似性同构 知网
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部