期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study on association rules mining based on semantic relativity 被引量:2
1
作者 张磊 夏士雄 +1 位作者 周勇 夏战国 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期358-360,共3页
An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic rela... An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic relativity of ontology concepts is used to describe complicated relationships of domains in the method.Candidate item sets with less semantic relativity are filtered to reduce the number of candidate item sets in association rules mining.An ontology hierarchy relationship is regarded as a directed acyclic graph rather than a hierarchy tree in the semantic relativity computation.Not only direct hierarchy relationships,but also non-direct hierarchy relationships and other typical semantic relationships are taken into account.Experimental results show that the proposed method can reduce the number of candidate item sets effectively and improve the efficiency of association rules mining. 展开更多
关键词 ONTOLOGY association rules mining semantic relativity
下载PDF
面向微博话题的“主题+观点”词条抽取算法研究 被引量:6
2
作者 姚兆旭 马静 《现代图书情报技术》 CSSCI 2016年第7期78-86,共9页
【目的】自动抽取微博话题信息,从主题及观点两个维度整合揭示微博话题内容与观点。【方法】将主题模型应用于微博话题中,结合改进的TF-IDF算法,构建主题特征词向量;基于特征词向量中特征词之间的相关度,自动抽取主题词汇链;引入情感词... 【目的】自动抽取微博话题信息,从主题及观点两个维度整合揭示微博话题内容与观点。【方法】将主题模型应用于微博话题中,结合改进的TF-IDF算法,构建主题特征词向量;基于特征词向量中特征词之间的相关度,自动抽取主题词汇链;引入情感词典,抽取主题观点,无监督构建"主题+观点"词条。【结果】使用爬虫工具抽取2014年6月–2015年6月期间4个特定热门微博话题事件的微博共24 598条,抽取"主题+观点"词条,平均准确率达到80.3%,召回率为76.7%。【局限】数据量依旧较小,主题模型对于微博短文本的特征抽取效果仍需提高。【结论】本文算法可以准确且有效地描述话题事件内容及其相应观点。 展开更多
关键词 义本挖掘 词条抽取 主题模型 微博话题
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部