The secretion function of mantle is closely related to shell formation in some bivalves and gastropods. Up to now, few researches have been reported for cuttlebone formation in the class Cephalopoda. In this study, th...The secretion function of mantle is closely related to shell formation in some bivalves and gastropods. Up to now, few researches have been reported for cuttlebone formation in the class Cephalopoda. In this study, the structure and secretion function of cuttlebone sac of the golden cuttlefish Sepia esculenta was analyzed using the histological and histochemical methods. The results showed that high and columnar cells located in sac epithelium, and fiat cells existed near the base membrane. A lot of fibroblasts were found in the lateral mantle collective tissue. Some mucus, mucopolysaccharide and alkaline phosphatase (ALP) were found in the sac. The ultrastructural characteristics of Quasi-connective-tissue-calcium cells (QCTCC) were observed using a transmission electron microscope (TEM). The relationship between cuttlebone sac secretion function and shell formation was discussed.展开更多
With the increasing effects of global climate change and fishing activities,the spatial distribution of the neon flying squid(Ommastrephes bartramii) is changing in the traditional fishing ground of 150°-160°...With the increasing effects of global climate change and fishing activities,the spatial distribution of the neon flying squid(Ommastrephes bartramii) is changing in the traditional fishing ground of 150°-160°E and 38°-45°N in the northwest Pacific Ocean.This research aims to identify the spatial hot and cold spots(i.e.spatial clusters) of O.bartramii to reveal its spatial structure using commercial fishery data from2007 to 2010 collected by Chinese mainland squid-j igging fleets.A relatively strongly-clustered distribution for O.bartramii was observed using an exploratory spatial data analysis(ESDA) method.The results show two hot spots and one cold spot in 2007 while only one hot and one cold spots were identified each year from2008 to 2010.The hot and cold spots in 2007 occupied 8.2%and 5.6%of the study area,respectively;these percentages for hot and cold spot areas were 5.8%and 3.1%in 2008,10.2%and 2.9%in 2009,and 16.4%and 11.9%in 2010,respectively.Nearly half(>45%) of the squid from 2007 to 2009 reported by Chinese fleets were caught in hot spot areas while this percentage reached its peak at 68.8%in 2010,indicating that the hot spot areas are central fishing grounds.A further change analysis shows the area centered at156°E/43.5°N was persistent as a hot spot over the whole period from 2007 to 2010.Furthermore,the hot spots were mainly identified in areas with sea surface temperature(SST) in the range of 15-20℃ around warm Kuroshio Currents as well as with the chlorophyll-a(chl-a) concentration above 0.3 mg/m^3.The outcome of this research improves our understanding of spatiotemporal hotspots and its variation for O.bartramii and is useful for sustainable exploitation,assessment,and management of this squid.展开更多
We separated tertiary egg membrane (TGM) from 2- and 25-day-old eggs of cuttlefish Sepiella maindroni de Rochebrune, and revealed its ultrastructure, physical (solubility, barrier property) and biochemical (histo...We separated tertiary egg membrane (TGM) from 2- and 25-day-old eggs of cuttlefish Sepiella maindroni de Rochebrune, and revealed its ultrastructure, physical (solubility, barrier property) and biochemical (histology, histochemistry, nutritional components, bacteriostasis) characteristics. The results show that TGM could not be dissolved with natural seawater, alcohol, ether or hydrochloric acid (HC1), but it could be dissolved with 2-chloroethanol, diethylamine, and sodium hydroxide (NaOH). The black TGM was more effective in blocking off mud particulates, microorganisms (Chlorella vulgaris, Vibrio alginolyticus) and lighter than the white TGM. The elasticity of black and white TGMs was 1.8 N and 1.5 N, respectively. There were some ink particulates and rod-shaped bacteria in the black TGM. The nutritional components were different between black and white TGMs: Lipid content was lower and protein content was higher in the black TGM. TGM could also inhibit the growth of Vibrio alginolyticus.展开更多
基金This study was supported by the grants from the National Natural Science Foundation of China (No. 30600463)the Key Laboratory of Mariculture of Ministry of Education, 0cean University of China (No. 200610).
文摘The secretion function of mantle is closely related to shell formation in some bivalves and gastropods. Up to now, few researches have been reported for cuttlebone formation in the class Cephalopoda. In this study, the structure and secretion function of cuttlebone sac of the golden cuttlefish Sepia esculenta was analyzed using the histological and histochemical methods. The results showed that high and columnar cells located in sac epithelium, and fiat cells existed near the base membrane. A lot of fibroblasts were found in the lateral mantle collective tissue. Some mucus, mucopolysaccharide and alkaline phosphatase (ALP) were found in the sac. The ultrastructural characteristics of Quasi-connective-tissue-calcium cells (QCTCC) were observed using a transmission electron microscope (TEM). The relationship between cuttlebone sac secretion function and shell formation was discussed.
基金Supported by the National Natural Science Foundation of China(Nos.41406146,41476129)the Natural Science Foundation of Shanghai Municipality(No.13ZR1419300)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(No.20123104120002)the Shanghai Universities First-Class Disciplines Project-Fisheries(A)
文摘With the increasing effects of global climate change and fishing activities,the spatial distribution of the neon flying squid(Ommastrephes bartramii) is changing in the traditional fishing ground of 150°-160°E and 38°-45°N in the northwest Pacific Ocean.This research aims to identify the spatial hot and cold spots(i.e.spatial clusters) of O.bartramii to reveal its spatial structure using commercial fishery data from2007 to 2010 collected by Chinese mainland squid-j igging fleets.A relatively strongly-clustered distribution for O.bartramii was observed using an exploratory spatial data analysis(ESDA) method.The results show two hot spots and one cold spot in 2007 while only one hot and one cold spots were identified each year from2008 to 2010.The hot and cold spots in 2007 occupied 8.2%and 5.6%of the study area,respectively;these percentages for hot and cold spot areas were 5.8%and 3.1%in 2008,10.2%and 2.9%in 2009,and 16.4%and 11.9%in 2010,respectively.Nearly half(>45%) of the squid from 2007 to 2009 reported by Chinese fleets were caught in hot spot areas while this percentage reached its peak at 68.8%in 2010,indicating that the hot spot areas are central fishing grounds.A further change analysis shows the area centered at156°E/43.5°N was persistent as a hot spot over the whole period from 2007 to 2010.Furthermore,the hot spots were mainly identified in areas with sea surface temperature(SST) in the range of 15-20℃ around warm Kuroshio Currents as well as with the chlorophyll-a(chl-a) concentration above 0.3 mg/m^3.The outcome of this research improves our understanding of spatiotemporal hotspots and its variation for O.bartramii and is useful for sustainable exploitation,assessment,and management of this squid.
基金Supported by the National Natural Science Foundation of China (No 40646030, 40776076)the Changjiang River Scholar and Innovative Research Team in university (No IRT0734)+4 种基金Key Scientific Research Project of Education Ministry of China (No207045)Key Project of Science and Technology of Zhejiang Province (No 2006C130402007C120762009R10012)K.C. Wong Magna Fund in Ningbo University
文摘We separated tertiary egg membrane (TGM) from 2- and 25-day-old eggs of cuttlefish Sepiella maindroni de Rochebrune, and revealed its ultrastructure, physical (solubility, barrier property) and biochemical (histology, histochemistry, nutritional components, bacteriostasis) characteristics. The results show that TGM could not be dissolved with natural seawater, alcohol, ether or hydrochloric acid (HC1), but it could be dissolved with 2-chloroethanol, diethylamine, and sodium hydroxide (NaOH). The black TGM was more effective in blocking off mud particulates, microorganisms (Chlorella vulgaris, Vibrio alginolyticus) and lighter than the white TGM. The elasticity of black and white TGMs was 1.8 N and 1.5 N, respectively. There were some ink particulates and rod-shaped bacteria in the black TGM. The nutritional components were different between black and white TGMs: Lipid content was lower and protein content was higher in the black TGM. TGM could also inhibit the growth of Vibrio alginolyticus.