There exist three types of nonlinear problems in large deformation processes of deep softrock engineering, i.e., nonlin- earity caused by material, geometrical and contact boundary. In this paper, the numerical method...There exist three types of nonlinear problems in large deformation processes of deep softrock engineering, i.e., nonlin- earity caused by material, geometrical and contact boundary. In this paper, the numerical method to tackle the nonlinear eontact and large deformation problem in A Software on Large Deformation Analysis for Soft Rock Engineering at Great Depth was presented. In the software, based on Lagrange multiplier method and Coulomb friction law, kinematic constraints on contact boundaries were introduced in functional function, and the finite element equations was established for two incremental large deformation analyses models, polar decomposition model and additive decomposition model. For every incremental loading step, by searching for the contact points in the potential contact interfaces (the excavation boundaries), the Lagrange multipliers, i.e., contact forces are cal- culated iteratively by Gauss-Seidel method, and justified through satisfy the inequalities of static constraint on contact boundaries. With the software, large deformation and frictional contact of a transport roadway were analyzed numerically by the two models. The numerical examples demonstrated the efficiency of the method used in the software.展开更多
Natural frequencies for multilayer plates are calculated by mixed finite element method. The main object of this paper is to use the mixed model for multilayer plates, analyzing each layer as an isolated plate, where ...Natural frequencies for multilayer plates are calculated by mixed finite element method. The main object of this paper is to use the mixed model for multilayer plates, analyzing each layer as an isolated plate, where the continuity of displacements is achieved by Lagrange multipliers (representing static variables). This procedure allows us to work with any model for single plate (so as to ensure the proper behavior of each layer), and the complexity of the multilayer system is avoided by ensuring the condition of displacements by the Lagrange multipliers (static variables). The plate is discretized by finite element modeling based on a primary hybrid model, where the domain is divided by quadrilateral, both for the displacement field and static variables. This mixed element for plates was implemented and several examples of vibrations have been verified successfully by the results obtained by other methods in the literature.展开更多
Let A be a d x d real expansive matrix. An A-dilation Parseval frame wavelet is a function φ E n2 (Rd), such that the set {|det A|n/2φ(Ant -l) :n ∈ Z, l∈ Zd} forms a Parseval frame for L2 (Rd). A measurab...Let A be a d x d real expansive matrix. An A-dilation Parseval frame wavelet is a function φ E n2 (Rd), such that the set {|det A|n/2φ(Ant -l) :n ∈ Z, l∈ Zd} forms a Parseval frame for L2 (Rd). A measurable function f is called an A-dilation Parseval frame wavelet multiplier if the inverse Fourier transform of fφ is an A-dilation Parseval frame wavelet whenever φ is an A-dilation Parseval frame wavelet, where φ denotes the Fourier transform of φ. In this paper, the authors completely characterize all A-dilation Parseval frame wavelet multipliers for any integral expansive matrix A with | det(A)|= 2. As an application, the path-connectivity of the set of all A-dilation Parseval frame wavelets with a frame MRA in L2(Rd) is discussed.展开更多
In this paper, we study the invariant subspaces of the operator Mz on the Sobolev disk algebra R(D) and characterize the invariant subspace with finite codimension.
This work is concerned with the proof of Lp-Lq decay estimates for solutions of the Cauchy problem for utt-λ2(t)b2(t) △ u =0. The coefficient consists of an increasing smooth function λ and an oscillating smoot...This work is concerned with the proof of Lp-Lq decay estimates for solutions of the Cauchy problem for utt-λ2(t)b2(t) △ u =0. The coefficient consists of an increasing smooth function λ and an oscillating smooth and bounded function b which are uniformly separated from zero. The authors’ main interest is devoted to the critical case where one has an interesting interplay between the growing and the oscillating part.展开更多
Adjoint-based optimization method is a hotspot in turbomachinery.First,this paper presents principles of adjoint method from Lagrange multiplier viewpoint.Second,combining a continuous route with thin layer RANS equat...Adjoint-based optimization method is a hotspot in turbomachinery.First,this paper presents principles of adjoint method from Lagrange multiplier viewpoint.Second,combining a continuous route with thin layer RANS equations,we formulate adjoint equations and anti-physical boundary conditions.Due to the multi-stage environment in turbomachinery,an adjoint interrow mixing method is introduced.Numerical techniques of solving flow equations and adjoint equations are almost the same,and once they are converged respectively,the gradients of an objective function to design variables can be calculated using complex method efficiently.Third,integrating a shape perturbation parameterization and a simple steepest descent method,a frame of adjoint-based aerodynamic shape optimization for multi-stage turbomachinery is constructed.At last,an inverse design of an annular cascade is employed to validate the above approach,and adjoint field of an Aachen 1.5 stage turbine demonstrates the conservation and areflexia of the adjoint interrow mixing method.Then a direct redesign of a 1+1 counter-rotating turbine aiming to increase efficiency and apply constraints to mass flow rate and pressure ratio is taken.展开更多
The lasso of Tibshirani (1996) is a least-squares problem regularized by the l1 norm. Due to the sparseness promoting property of the l1 norm, the lasso has been received much attention in recent years. In this pape...The lasso of Tibshirani (1996) is a least-squares problem regularized by the l1 norm. Due to the sparseness promoting property of the l1 norm, the lasso has been received much attention in recent years. In this paper some basic properties of the lasso and two variants of it are exploited. Moreover, the proximal method and its variants such as the relaxed proximal algorithm and a dual method for solving the lasso by iterative algorithms are presented.展开更多
For analyzing correlated binary data with high-dimensional covariates,we,in this paper,propose a two-stage shrinkage approach.First,we construct a weighted least-squares(WLS) type function using a special weighting sc...For analyzing correlated binary data with high-dimensional covariates,we,in this paper,propose a two-stage shrinkage approach.First,we construct a weighted least-squares(WLS) type function using a special weighting scheme on the non-conservative vector field of the generalized estimating equations(GEE) model.Second,we define a penalized WLS in the spirit of the adaptive LASSO for simultaneous variable selection and parameter estimation.The proposed procedure enjoys the oracle properties in high-dimensional framework where the number of parameters grows to infinity with the number of clusters.Moreover,we prove the consistency of the sandwich formula of the covariance matrix even when the working correlation matrix is misspecified.For the selection of tuning parameter,we develop a consistent penalized quadratic form(PQF) function criterion.The performance of the proposed method is assessed through a comparison with the existing methods and through an application to a crossover trial in a pain relief study.展开更多
A new index is constructed by use of the canonical representation of S1 × S1 group over a product space. This index satisfies the general properties of the usual index but does not satifsy the dimension property....A new index is constructed by use of the canonical representation of S1 × S1 group over a product space. This index satisfies the general properties of the usual index but does not satifsy the dimension property. As an application, two abstract critical point theorems are given.展开更多
基金subsidized by special funds for the National Basic Research Program of China (No.2002cb412708)supported by the Opening Funds of the State Key Laboratory of Hydroscience and Engineering of China (No.sklhse-2007-D-02)
文摘There exist three types of nonlinear problems in large deformation processes of deep softrock engineering, i.e., nonlin- earity caused by material, geometrical and contact boundary. In this paper, the numerical method to tackle the nonlinear eontact and large deformation problem in A Software on Large Deformation Analysis for Soft Rock Engineering at Great Depth was presented. In the software, based on Lagrange multiplier method and Coulomb friction law, kinematic constraints on contact boundaries were introduced in functional function, and the finite element equations was established for two incremental large deformation analyses models, polar decomposition model and additive decomposition model. For every incremental loading step, by searching for the contact points in the potential contact interfaces (the excavation boundaries), the Lagrange multipliers, i.e., contact forces are cal- culated iteratively by Gauss-Seidel method, and justified through satisfy the inequalities of static constraint on contact boundaries. With the software, large deformation and frictional contact of a transport roadway were analyzed numerically by the two models. The numerical examples demonstrated the efficiency of the method used in the software.
文摘Natural frequencies for multilayer plates are calculated by mixed finite element method. The main object of this paper is to use the mixed model for multilayer plates, analyzing each layer as an isolated plate, where the continuity of displacements is achieved by Lagrange multipliers (representing static variables). This procedure allows us to work with any model for single plate (so as to ensure the proper behavior of each layer), and the complexity of the multilayer system is avoided by ensuring the condition of displacements by the Lagrange multipliers (static variables). The plate is discretized by finite element modeling based on a primary hybrid model, where the domain is divided by quadrilateral, both for the displacement field and static variables. This mixed element for plates was implemented and several examples of vibrations have been verified successfully by the results obtained by other methods in the literature.
基金Project Supported by the National Natural Science Foundation of China(Nos.11071065,11101142,11171306,10671062)the China Postdoctoral Science Foundation(No.20100480942)+1 种基金the Doctoral Program Foundation of the Ministry of Education of China(No.20094306110004) the Program for Science and Technology Research Team in Higher Educational Institutions of Hunan Province
文摘Let A be a d x d real expansive matrix. An A-dilation Parseval frame wavelet is a function φ E n2 (Rd), such that the set {|det A|n/2φ(Ant -l) :n ∈ Z, l∈ Zd} forms a Parseval frame for L2 (Rd). A measurable function f is called an A-dilation Parseval frame wavelet multiplier if the inverse Fourier transform of fφ is an A-dilation Parseval frame wavelet whenever φ is an A-dilation Parseval frame wavelet, where φ denotes the Fourier transform of φ. In this paper, the authors completely characterize all A-dilation Parseval frame wavelet multipliers for any integral expansive matrix A with | det(A)|= 2. As an application, the path-connectivity of the set of all A-dilation Parseval frame wavelets with a frame MRA in L2(Rd) is discussed.
基金the National Natural Science Foundation of China (10471041)
文摘In this paper, we study the invariant subspaces of the operator Mz on the Sobolev disk algebra R(D) and characterize the invariant subspace with finite codimension.
文摘This work is concerned with the proof of Lp-Lq decay estimates for solutions of the Cauchy problem for utt-λ2(t)b2(t) △ u =0. The coefficient consists of an increasing smooth function λ and an oscillating smooth and bounded function b which are uniformly separated from zero. The authors’ main interest is devoted to the critical case where one has an interesting interplay between the growing and the oscillating part.
文摘Adjoint-based optimization method is a hotspot in turbomachinery.First,this paper presents principles of adjoint method from Lagrange multiplier viewpoint.Second,combining a continuous route with thin layer RANS equations,we formulate adjoint equations and anti-physical boundary conditions.Due to the multi-stage environment in turbomachinery,an adjoint interrow mixing method is introduced.Numerical techniques of solving flow equations and adjoint equations are almost the same,and once they are converged respectively,the gradients of an objective function to design variables can be calculated using complex method efficiently.Third,integrating a shape perturbation parameterization and a simple steepest descent method,a frame of adjoint-based aerodynamic shape optimization for multi-stage turbomachinery is constructed.At last,an inverse design of an annular cascade is employed to validate the above approach,and adjoint field of an Aachen 1.5 stage turbine demonstrates the conservation and areflexia of the adjoint interrow mixing method.Then a direct redesign of a 1+1 counter-rotating turbine aiming to increase efficiency and apply constraints to mass flow rate and pressure ratio is taken.
文摘The lasso of Tibshirani (1996) is a least-squares problem regularized by the l1 norm. Due to the sparseness promoting property of the l1 norm, the lasso has been received much attention in recent years. In this paper some basic properties of the lasso and two variants of it are exploited. Moreover, the proximal method and its variants such as the relaxed proximal algorithm and a dual method for solving the lasso by iterative algorithms are presented.
基金supported by National Natural Science Foundation of China(Grant No.11201306)the Innovation Program of Shanghai Municipal Education Commission(Grant No.13YZ065)+2 种基金the Fundamental Research Project of Shanghai Normal University(Grant No.SK201207)the scholarship under the State Scholarship Fund by the China Scholarship Council in 2011the Research Grant Council of Hong Kong, Hong Kong,China(Grant No.#HKBU2028/10P)
文摘For analyzing correlated binary data with high-dimensional covariates,we,in this paper,propose a two-stage shrinkage approach.First,we construct a weighted least-squares(WLS) type function using a special weighting scheme on the non-conservative vector field of the generalized estimating equations(GEE) model.Second,we define a penalized WLS in the spirit of the adaptive LASSO for simultaneous variable selection and parameter estimation.The proposed procedure enjoys the oracle properties in high-dimensional framework where the number of parameters grows to infinity with the number of clusters.Moreover,we prove the consistency of the sandwich formula of the covariance matrix even when the working correlation matrix is misspecified.For the selection of tuning parameter,we develop a consistent penalized quadratic form(PQF) function criterion.The performance of the proposed method is assessed through a comparison with the existing methods and through an application to a crossover trial in a pain relief study.
文摘A new index is constructed by use of the canonical representation of S1 × S1 group over a product space. This index satisfies the general properties of the usual index but does not satifsy the dimension property. As an application, two abstract critical point theorems are given.