A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy syst...A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.展开更多
This paper employs the SCAD-penalized least squares method to simultaneously select variables and estimate the coefficients for high-dimensional covariate adjusted linear regression models.The distorted variables are ...This paper employs the SCAD-penalized least squares method to simultaneously select variables and estimate the coefficients for high-dimensional covariate adjusted linear regression models.The distorted variables are assumed to be contaminated with a multiplicative factor that is determined by the value of an unknown function of an observable covariate.The authors show that under some appropriate conditions,the SCAD-penalized least squares estimator has the so called "oracle property".In addition,the authors also suggest a BIC criterion to select the tuning parameter,and show that BIC criterion is able to identify the true model consistently for the covariate adjusted linear regression models.Simulation studies and a real data are used to illustrate the efficiency of the proposed estimation algorithm.展开更多
基金Project(61473298)supported by the National Natural Science Foundation of ChinaProject(2015QNA65)supported by Fundamental Research Funds for the Central Universities,China
文摘A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.
基金supported by the National Natural Science Foundation of China under Grant Nos.11471029,11101014,61273221 and 11171010the Beijing Natural Science Foundation under Grant Nos.1142002 and 1112001+1 种基金the Science and Technology Project of Beijing Municipal Education Commission under Grant No.KM201410005010the Research Fund for the Doctoral Program of Beijing University of Technology under Grant No.006000543114550
文摘This paper employs the SCAD-penalized least squares method to simultaneously select variables and estimate the coefficients for high-dimensional covariate adjusted linear regression models.The distorted variables are assumed to be contaminated with a multiplicative factor that is determined by the value of an unknown function of an observable covariate.The authors show that under some appropriate conditions,the SCAD-penalized least squares estimator has the so called "oracle property".In addition,the authors also suggest a BIC criterion to select the tuning parameter,and show that BIC criterion is able to identify the true model consistently for the covariate adjusted linear regression models.Simulation studies and a real data are used to illustrate the efficiency of the proposed estimation algorithm.