Objective: To elongate human nerve axon in cultu re and search for suitable support matrices for peripheral nervous system trans plantation. Methods: Human embryo cortical neuronal cells,seeded on poly ( D,L-lactide-c...Objective: To elongate human nerve axon in cultu re and search for suitable support matrices for peripheral nervous system trans plantation. Methods: Human embryo cortical neuronal cells,seeded on poly ( D,L-lactide-co-glycolide) (PLGA) membrane scaffolds,were elongated with a se lf-made neuro-axon extending device. The growth and morphological changes of n euron axons were observed to measure axolemmal permeability after elongation. Ne urofilament protein was stained by immunohistochemical technique.Results: Human embryo neuron axon could be elongated and cultur ed on the PLGA membrane and retain their normal form and function. Conclusions: Three dimensional scaffolds with elongated neuron axon have the basic characteristics of artificial nerves,indicating a fundement al theory of nerve repair with elongated neuron axon.展开更多
文摘Objective: To elongate human nerve axon in cultu re and search for suitable support matrices for peripheral nervous system trans plantation. Methods: Human embryo cortical neuronal cells,seeded on poly ( D,L-lactide-co-glycolide) (PLGA) membrane scaffolds,were elongated with a se lf-made neuro-axon extending device. The growth and morphological changes of n euron axons were observed to measure axolemmal permeability after elongation. Ne urofilament protein was stained by immunohistochemical technique.Results: Human embryo neuron axon could be elongated and cultur ed on the PLGA membrane and retain their normal form and function. Conclusions: Three dimensional scaffolds with elongated neuron axon have the basic characteristics of artificial nerves,indicating a fundement al theory of nerve repair with elongated neuron axon.