期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
3—乙基氨基对甲苯酚的制备方法
1
《化工文摘》 2002年第1期27-27,共1页
关键词 3-乙基氨基对甲苯酚 制备方法 河北省鹿泉市星字工总厂 邻甲苯胺 乙基烷化
下载PDF
Selective oxidative dehydrogenation of ethane to ethylene over a hydroxylated boron nitride catalyst 被引量:11
2
作者 石磊 闫冰 +3 位作者 邵丹 姜凡 王东琪 陆安慧 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期389-395,共7页
Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene,offering rather high selectivity(95%) but only small amount of CO2 formation(0.4%) at a given ethane c... Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene,offering rather high selectivity(95%) but only small amount of CO2 formation(0.4%) at a given ethane conversion of 11%.Even at high conversion level of 63%,the selectivity of ethylene retained at 80%,which is competitive with the energy-demanding industrialized steam cracking route.A long-term test for 200 h resulted in stable conversion and product selectivity,showing the excellent catalytic stability.Both experimental and computational studies have identified that the hydrogen abstraction of B-OH groups by molecular oxygen dynamically generated the active sites and triggered ethane dehydrogenation. 展开更多
关键词 Boron nitride HYDROXYLATION ETHANE Oxidative dehydrogenation ETHYLENE
下载PDF
Advances in development and industrial applications of ethylbenzene processes 被引量:28
3
作者 杨为民 王振东 +1 位作者 孙洪敏 张斌 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期16-26,共11页
The benzene alkylation process for the production of ethylbenzene has undergone significant improvements during recent decades.Various environmentally benign zeolite-catalyzed ethylbenzene processes,including ZSM-5-ze... The benzene alkylation process for the production of ethylbenzene has undergone significant improvements during recent decades.Various environmentally benign zeolite-catalyzed ethylbenzene processes,including ZSM-5-zeolite-based vapor-phase ethylbenzene processes and Y-,β-,and MCM-22-zeolite-based liquid-phase processes,have been developed and commercialized.Pure ethylene,ethanol,and dilute ethylene have been used as ethylation agents.Here,the development and industrial application of alkylation catalysts and benzene ethylation techniques are summarized,and some other promising innovations are discussed.Recent advances in benzene alkylation over hierarchical zeolites with improved access to active sites and molecular transport are also covered.Zeolites with short diffusion lengths are promising candidates as better alkylation catalysts.The key point is how to obtain such materials easily and economically.The structure-activity relationships of commercial zeolites in these processes are discussed.Liquid-phase processes catalyzed by β and MCM-22 are more profitable than vapor-phase processes catalyzed by ZSM-5. 展开更多
关键词 ETHYLBENZENE ALKYLATION TRANSALKYLATION ZSM-5 zeolite MCM-22 zeolite Beta zeolite Y zeolite
下载PDF
New Alkylation Route of Benzene with Ethylene Catalyzed by [bmim]Cl/FeCl_3 Ionic Liquid 被引量:4
4
作者 孙学文 赵锁奇 王仁安 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第5期658-661,共4页
Up to now the mechanism of Priedel-Crafts reactions catalyzed by ionic liquidhave not been fully understood, while carbocation mechanism was assumed. It was found that thesource of H^+ and the route of reaction initia... Up to now the mechanism of Priedel-Crafts reactions catalyzed by ionic liquidhave not been fully understood, while carbocation mechanism was assumed. It was found that thesource of H^+ and the route of reaction initiated the alkylation of benzene with ethylene catalyzedby [bmim]Cl/FeCl_3 ionic liquid. The fact that dewatered ionic liquids have catalytic activity forthe alkylation of benzene with ethylene suggests that there exists a new catalytic route. Thedistinctly Bronsted acid properties of 2-H in [bmim]Cl were found through FT-IR and HNMR analysis of[bmim]Cl after titration with water free KOH in alcohol solution. In addition, the chemical shiftsof proton on the [bmim]Cl ring, especially 2-H, are sensitive to the change of FeCl_3 content andshifted downfield when FeCl_3 was added into [bmim]Cl to form ionic liquid. Thus 2-H was easy to bedisengaged from imidazolium ring with formation of H^+ to initiate the reaction. Theisotope-substituted method was employed to prove this mechanism, through the GC-MS analysis ofalkylation products of deuterated benzene with ethylene. The route of alkylation catalyzed by FeCl_3ionic liquid was found to follow the carbocation mechanism, the resource of H^+ was presented andproved using HNMR analysis of ionic liquid to inspect the intensity change of 2-H. It was found thatthe intensity of 2-H reduced 23% after reaction showing that the H^+ arising from alkylationreaction was supplied by 2-H on the imidazole ring. 展开更多
关键词 ALKYLATION mechanism ETHYLENE BENZENE [bmim]Cl/FeCl_3 ionic liquid
下载PDF
Controllable direct-syntheses of delaminated MWW-type zeolites 被引量:10
5
作者 Zhendong Wang Magdalena OCichocka +4 位作者 Yi Luo Bin Zhang Hongmin Sun Yi Tang Weimin Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第7期1062-1066,共5页
A method for the direct syntheses of partially and fully delaminated MWW zeolites is reported herein.Two organic amines were introduced into the hydrothermal synthetic system:hexamethyleneimine(HMI),which acted as the... A method for the direct syntheses of partially and fully delaminated MWW zeolites is reported herein.Two organic amines were introduced into the hydrothermal synthetic system:hexamethyleneimine(HMI),which acted as the structure-directing agent for the MWW layered structure;and dicyclohexylamine(DCHA),in the role of an in-situ delaminating agent.By varying the amount of DCHA,partially and fully delaminated MWW zeolites having two MWW structure layers and one single layer,respectively,were obtained.These were denoted as SCM-1(Sinopec Composite Material)and SCM-6,respectively.The delaminated materials possess ultra-large external surface areas,and the transmission electron microscopy images illustrated their layered nature.In the reaction of liquid phase benzene alkylation with ethylene,SCM-1,the double-layered MWW zeolite,exhibited far superior catalytic performance compared to zeolite MCM-22. 展开更多
关键词 ZEOLITE MWW ALKYLATION ETHYLBENZENE DELAMINATION Catalysis
下载PDF
Synthesis and characterization of porous cobalt oxide/copper oxide nanoplate as novel electrode material for supercapacitors 被引量:2
6
作者 张水蓉 胡志彪 +3 位作者 刘开宇 刘艳珍 何方 谢清亮 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4054-4062,共9页
A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvi... A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvinylpyrrolidone(PVP) on the morphology and electrochemical performance of the composite were investigated. Powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and nitrogen adsorption-desorption experiment were employed to characterize the microstructures and morphologies of the composite. Meanwhile, the electrochemical performances of the samples were studied using cyclic voltammetry(CV), galvanostatic charge-discharge test and electrochemical impedance spectroscopy(EIS). The results show that the porous Co3O4/Cu O-CTAB nanoplates own the best performance and exhibits a high specific capacitance of 398 F/g at 1 A/g with almost 100% capacitance retention over 2000 cycles, and it retains 90% of capacitance at 10 A/g. 展开更多
关键词 cobalt oxide/copper oxide composite hexadecyltrimethylammonium bromide(CTAB) polyvinylpyrrolidone(PVP) hydrothermal method SUPERCAPACITORS
下载PDF
Research on Ethylene and Propylene Formation during Catalytic Pyrolysis of Methylcyclohexane 被引量:3
7
作者 Yu Shan Zhang Jiushun Wei Xiaoli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第4期73-79,共7页
The influence of operating parameters and type of zeolite catalysts on formation of ethylene and propylene during catalytic pyrolysis of methylcyclohexane (MCH) was studied in a laboratory fixed fluidized bed reactor.... The influence of operating parameters and type of zeolite catalysts on formation of ethylene and propylene during catalytic pyrolysis of methylcyclohexane (MCH) was studied in a laboratory fixed fluidized bed reactor. The results indicated that higher reaction temperature and lower WHSV tended to produce more ethylene and propylene, among which the reaction temperature was an important factor influencing the ethylene formation. Compared with the FAU and BEA type zeolites, the MFI structured zeolite catalyst, thanks to more acid sites and smaller pore diameter of the catalyst, was conducive to the formation of ethylene and propylene. The protonation occurred on different C—C bonds and C—H bonds in the carbon chain of MCH led to different product slates, and the protonation on C—C bonds located at naphthenic ring was favorable to the formation of ethylene and propylene. 展开更多
关键词 METHYLCYCLOHEXANE catalytic pyrolysis ETHYLENE PROPYLENE reaction pathway
下载PDF
Synthesis of Methyl 3-Hydroxypropanoate by Hydroesterification of Ethylene Oxide over Dicobalt Octacarbonyl Catalyst
8
作者 Zhang Ye Zhou Haijun +1 位作者 Xie Xianmei Chen Xiaoping 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第4期48-51,共4页
Methyl 3-hydroxypropanoate was synthesized via hydroesterification of ethylene oxide with CO in the presence of dicobalt octacarbonyl catalyst and methanol solvent. The catalyst exhibited high catalytic activity. The ... Methyl 3-hydroxypropanoate was synthesized via hydroesterification of ethylene oxide with CO in the presence of dicobalt octacarbonyl catalyst and methanol solvent. The catalyst exhibited high catalytic activity. The effect of reaction temperature, CO pressure, methanol dosage, catalyst dosage and reaction time on catalytic reaction was investigated. The test results revealed that this reaction was greatly affected by reaction temperature, but it was not significantly affected by the CO pressure, the methanol dosage, the catalyst dosage and the reaction time. Under the optimal conditions, the conversion of ethylene oxide was equal to 92.24%, while the selectivity and yield of methyl 3-hydroxypropanoate reached 88.99% and 84.35%, respectively. 展开更多
关键词 ethylene oxide methyl 3-hydroxypropanoate dicobalt octacarbonyl hydroesterification.
下载PDF
Investigation of N-(Hydroxylethyl)pyrrolidone Dehydration over REOx-doped Nano-ZrO2 Catalyst
9
作者 张磊 刘欣梅 阎子峰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3期309-313,共5页
Catalyst plays an important role in the dehydration of N-(hydroxylethyl)pyrrolidone (NHP) to prepare N-vinyl-pyrrolidone (NVP). At present, NVP yield is only about 30% on commercial ZrO2 catalyst. A coupled prec... Catalyst plays an important role in the dehydration of N-(hydroxylethyl)pyrrolidone (NHP) to prepare N-vinyl-pyrrolidone (NVP). At present, NVP yield is only about 30% on commercial ZrO2 catalyst. A coupled precipitation and solid dispersion technique was designed to prepare the nano-ZrO2 catalyst, in which rare earth metal oxides (REOx) was used as electronic promoter. The results indicated that the catalyst doped REOx (S-1.0) exhibits the optimum performance of NHP dehydration at moderate conditions. NHP conversion and NVP selectivity are respectively 97.0%, 82.3%. Of special interest is that the indexes of the catalyst (S-1.0-1.0) are up to 98.4% and 89.2% respectively. Furthermore, this catalyst bears the good stability. It means that nano-ZrO2 doped REOx catalyst might be a potential commercial catalyst for the NHP dehydration. 展开更多
关键词 N-(hydroxylethyl)pyrrolidone DEHYDRATION rare earth metal oxides Nano-ZrO2 catalyst
下载PDF
Highly Efficient Asymmetric Transcyanation of Acetyltrimethylsilane with Acetone Cyanohydrin Catalyzed by (R)-Oxynitrilase from Prunus Japonica Seed Meal
10
作者 黄舜荣 吴虹 宗敏华 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第5期663-668,共6页
Highly efficient asymmetric transcyanation of acetyltrimethylsilane with acetone cyanohydrin in an aqueous/organic biphasic system catalyzed with (R)-oxynitrilase from defatted Prunus Japonica seed meal for the prep... Highly efficient asymmetric transcyanation of acetyltrimethylsilane with acetone cyanohydrin in an aqueous/organic biphasic system catalyzed with (R)-oxynitrilase from defatted Prunus Japonica seed meal for the preparation of optically active (R)-2-trimethylsilyl-2-hydroxyl-propionitrile was successfully carried out for the first time. For better understanding of the reaction, various influential variables were examined with respect to the initial reaction rate, the substrate conversion and the product enantiomeric excess (e.e.). Diisopropyl ether was found to be the best organic phase for this reaction among all the organic solvents tested. The optimal concentrations of Prunus Japonica seed meal powder, acetyltrimethylsilane and acetone cyanohydrin, volume ratio of aqueous phase to organic phase, buffer pH value and the reaction temperature were 34.5g·L^-1 and 14mmol· L^-1, 28mmol· L^-1, 13% (by volume), 5.0 and 30℃, respectively, while the initial reaction rate, the substrate conversion and the product enantiomeric excess were 1.34 mmol·L^-1·h^-1, 99.0% and 99.0%, respectively. The comparative study demonstrated that silicon atom in substrate showed great effect on the reaction and acetyltrimethylsilane was a much better substrate for (R)-hydroxynitrile lyase from Prunus Japonica seed than its carbon analogue 3,3-dimethyl-2-butanone. 展开更多
关键词 asymmetric transcyanation acetyltrimethylsilane (R)-oxynitrilase (R)-2-trimethylsilyl-2-hydroxylpropionitrile
下载PDF
Palladium-catalyzed oxidative cyclopropanation of enamides and norbornenes initiated by C–H activation 被引量:1
11
作者 Ming Chen Mi-Na Zhao +2 位作者 Yao-Du Zhang Zhi-Hui Ren Zheng-Hui Guan 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第6期695-701,共7页
A novel palladium-catalyzed oxidative cyclopropanation of enamides and norbornenes has been developed. The reaction proceeded through palladium-catalyzed vinyl C–H bond activation of enamides followed by two migrator... A novel palladium-catalyzed oxidative cyclopropanation of enamides and norbornenes has been developed. The reaction proceeded through palladium-catalyzed vinyl C–H bond activation of enamides followed by two migratory insertions, β-(N)H elimination and hydrolyzation cascade steps. The reaction tolerates a range of functional groups and provides an effective method for the synthesis of cyclopropane-fused norbornanes in good yields under mild conditions. 展开更多
关键词 PALLADIUM-CATALYZED CYCLOPROPANATION C–H activation ENAMIDES NORBORNENES
原文传递
A single Au nanoparticle anchored inside the porous shell of periodic mesoporous organosilica hollow spheres 被引量:3
12
作者 Ying Yang Wen Zhang +6 位作者 Ying Zhang Anmin Zheng Hui Sun Xinsong Li Suyan Liu Pengfang Zhang Xin Zhang 《Nano Research》 SCIE EI CAS CSCD 2015年第10期3404-3411,共8页
An ideal metal catalyst requires easy contact with reaction reagents, a large number of exposed active sites, and high stability against leaching or particle agglomeration. Anchoring a metal core inside a porous shell... An ideal metal catalyst requires easy contact with reaction reagents, a large number of exposed active sites, and high stability against leaching or particle agglomeration. Anchoring a metal core inside a porous shell, though scarcely reported, may combine these advantages owing to the integration of the conventional supported metal arrangement into a core@void@shell architecture. However, achieving this is extremely difficult owing to the weak core-shell affinity. Herein, we report, for the first time, an approach to overcome this challenge by increasing the core-shell interaction. In this regard, we synthesized a novel Au@void@periodic mesoporous organosilica (PMO) architecture in which a single Au core is firmly anchored inside the porous shell of the hollow PMO sphere. The non-covalent interactions between the poly(vinylpyrrolidone) (PVP) groups of functionalized Au and ethane moieties of PMO facilitate the movement of the Au core towards the porous shell during the selective alkaline etching of Au@SiO2@PMO. Shell-anchored Au cores are superior to the suspended cores in the conventional Au@void@PMO in terms of contact with reagents and exposure of active sites, and hence show higher catalytic efficiency for 4-nitrophenol reduction. The methodology demonstrated here provides a new insight for the fabrication of versatile multifunctional nanostructures with cores anchored inside hollow shells. 展开更多
关键词 gold nanoparticles periodic mesoporousorganosilica yolk-shell nanostructure core-shell interaction 4-nitropheol reduction
原文传递
One-step preparation of vinyl-functionalized material surfaces:a versatile platform for surface modification 被引量:2
13
作者 DU Jun LIU XiaoLi +2 位作者 LIU Wei WU ZhaoQiang CHEN Hong 《Science China Chemistry》 SCIE EI CAS 2014年第4期654-660,共7页
A simple approach has been developed to functionalize various substrates, such as gold and polyvinylchloride, with dopamine methacrylamide—a molecule with adhesive properties that mimic those of mussels—to produce a... A simple approach has been developed to functionalize various substrates, such as gold and polyvinylchloride, with dopamine methacrylamide—a molecule with adhesive properties that mimic those of mussels—to produce a versatile and general platform for subsequent surface modification. With active double bonds on the surface, various polymers, such as poly([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide(PMEDSAH) and poly(N-vinylpyrrolidone)(PVP), can be grafted by conventional radical polymerization. Double bond surface functionalization and subsequent polymer grafting have been verified by static water contact angle, Fourier transform infrared–attenuated total reflectance(FTIR-ATR) spectroscopy and X-ray photoelectron spectroscopy(XPS) measurements. Protein adsorption assays showed that the polymermodified substrates have good protein-resistant properties. Considering the advantages of facility, versatility and substrate- independence, this method should be useful in designing functional interfaces for bioengineering applications. 展开更多
关键词 surface modification DOPAMINE gold POLYVINYLCHLORIDE radical polymerization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部