Pd/oxide/cordierite monolithic catalysts(oxide = Al_2O_3, SiO_2 and SiO_2\\Al_2O_3) were prepared by the impregnation method. The results of ICP, XRD, SEM–EDX, XPS and N_2 adsorption–desorption measurements revealed...Pd/oxide/cordierite monolithic catalysts(oxide = Al_2O_3, SiO_2 and SiO_2\\Al_2O_3) were prepared by the impregnation method. The results of ICP, XRD, SEM–EDX, XPS and N_2 adsorption–desorption measurements revealed that the Pd penetration depth increased with increasing the thickness of oxide layer, and the catalysts with Al_2O_3 layers had the larger pore size than those with SiO_2 and SiO_2\\Al_2O_3 layers. Catalytic hydrogenation of 2-ethylanthraquinone(eA Q), a key step of the H_2O_2 production by the anthraquinone process, over the various monolithic catalysts(60 °C, atmosphere pressure) showed that the monolithic catalyst with the moderate thickness of Al_2O_3 layer(about 6 μm) exhibited the highest conversion of e AQ(99.1%) and hydrogenation efficiency(10.0 g·L^(-1)). This could be ascribed to the suitable Pd penetration depth and the larger pore size, which provides a balance between the distribution of Pd and accessibility of active sites by the reactants.展开更多
Actuators that can directly convert other forms of environmental energy into mechanical work offer great application prospects in intriguing energy applications and smart devices. But to-date, low cohesion strength of...Actuators that can directly convert other forms of environmental energy into mechanical work offer great application prospects in intriguing energy applications and smart devices. But to-date, low cohesion strength of the interface and humidity responsive actuators primarily limit their applications. Herein, by experimentally optimizing interface of bimorph structure, we build graphene oxide/ethyl cellulose bidirectional bending actuators — a case of bimorphs with fast and reversible shape changes in response to environmental humidity gradients. Meanwhile, we employ the actuator as the engine to drive piezoelectric detector. In this case, graphene oxide and ethyl cellulose are combined with chemical bonds, successfully building a bimorph with binary synergy strengthening and toughening. The excellent hygroscopicity of graphene oxide accompanied with huge volume expansion triggers giant moisture responsiveness greater than 90 degrees. Moreover, the open circuit voltage of piezoelectric detector holds a peak value around 0.1 V and exhibits excellent reversibility. We anticipate that humidity-responsive actuator and detector hold promise for the application and expansion of smart devices in varieties of multifunctional nanosystems.展开更多
基金Supported by the Sinopec Corp.Scientific Research Projects(414076)
文摘Pd/oxide/cordierite monolithic catalysts(oxide = Al_2O_3, SiO_2 and SiO_2\\Al_2O_3) were prepared by the impregnation method. The results of ICP, XRD, SEM–EDX, XPS and N_2 adsorption–desorption measurements revealed that the Pd penetration depth increased with increasing the thickness of oxide layer, and the catalysts with Al_2O_3 layers had the larger pore size than those with SiO_2 and SiO_2\\Al_2O_3 layers. Catalytic hydrogenation of 2-ethylanthraquinone(eA Q), a key step of the H_2O_2 production by the anthraquinone process, over the various monolithic catalysts(60 °C, atmosphere pressure) showed that the monolithic catalyst with the moderate thickness of Al_2O_3 layer(about 6 μm) exhibited the highest conversion of e AQ(99.1%) and hydrogenation efficiency(10.0 g·L^(-1)). This could be ascribed to the suitable Pd penetration depth and the larger pore size, which provides a balance between the distribution of Pd and accessibility of active sites by the reactants.
基金financially supported by the National Basic Research Program of China (2015CB932302)National Natural Science Foundation of China (U1432133, 11621063, 21701164)+2 种基金National Program for Support of Top-notch Young Professionalsthe Fundamental Research Funds for the Central Universities (WK2060190084, WK2060190058)supported from the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology
文摘Actuators that can directly convert other forms of environmental energy into mechanical work offer great application prospects in intriguing energy applications and smart devices. But to-date, low cohesion strength of the interface and humidity responsive actuators primarily limit their applications. Herein, by experimentally optimizing interface of bimorph structure, we build graphene oxide/ethyl cellulose bidirectional bending actuators — a case of bimorphs with fast and reversible shape changes in response to environmental humidity gradients. Meanwhile, we employ the actuator as the engine to drive piezoelectric detector. In this case, graphene oxide and ethyl cellulose are combined with chemical bonds, successfully building a bimorph with binary synergy strengthening and toughening. The excellent hygroscopicity of graphene oxide accompanied with huge volume expansion triggers giant moisture responsiveness greater than 90 degrees. Moreover, the open circuit voltage of piezoelectric detector holds a peak value around 0.1 V and exhibits excellent reversibility. We anticipate that humidity-responsive actuator and detector hold promise for the application and expansion of smart devices in varieties of multifunctional nanosystems.