期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
浅谈氧气表和乙炔表的安全防护作用
1
作者 孙湖生 《计量技术》 2001年第4期56-56,共1页
关键词 氧气 乙炔表 安全防护 回火防止器 维修 保养 采值稳定性
下载PDF
Reverse Microemulsion Synthesis and Characterization of Pd-Ag Bimetallic Alloy Catalysts Supported on Al_2O_3 for Acetylene Hydrogenation 被引量:4
2
作者 Wei Guobin Dai Wei +2 位作者 Li Qian Cao Weiliang Zhang Jingchang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第3期59-67,共9页
Pd-Ag bimetallic alloy nanoparticles were synthesized by the reverse microemulsion method, and then deposited on A1203 to form the supported catalyst. The nanoparticles of Pd-Ag and Pd-Ag/AI203 samples were characteri... Pd-Ag bimetallic alloy nanoparticles were synthesized by the reverse microemulsion method, and then deposited on A1203 to form the supported catalyst. The nanoparticles of Pd-Ag and Pd-Ag/AI203 samples were characterized by UV/ Vis, HRTEM, EDX, XRD, and XPS. The test results indicated that Pd-Ag bimetallic alloy nanoparticles with a size of about 2 nm and a face-centered cubic (fcc) structure were formed in the measured area of microemulsion. The growth of nanopar- ticles was effectively limited within the droplet of micoremulsion. TEM image exhibited that the Pd-Ag alloy nanoparticles were well-dispersed on the A1203 support. The catalytic performance of various catalysts for selective hydrogenation of acetylene showed that a higher acetylene conversion and selectivity to ethylene upon acetylene hydrogenation was achieved on a nano-sized Pd-Ag bimetallic catalyst with a Pd/Ag alloy supported molar ratio of 1:1.5. 展开更多
关键词 reverse microemulsion Pd-Ag bimetallic catalyst NANOPARTICLE acetylene hydrogenation
下载PDF
Surface chemical characterization of deactivated low-level mercury catalysts for acetylene hydrochlorination 被引量:1
3
作者 Chao Liu Chenhui Liu +3 位作者 Jinhui Peng Libo Zhang Shixing Wang Aiyuan Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第2期364-372,共9页
Mercury-containing catalysts are widely used for acetylene hydrochlorination in China. Surface chemical characteristics of the fresh low-level mercury catalysts and spent low-level mercury catalysts were compared usin... Mercury-containing catalysts are widely used for acetylene hydrochlorination in China. Surface chemical characteristics of the fresh low-level mercury catalysts and spent low-level mercury catalysts were compared using multiple characterization methods. Pore blockage and active site coverage caused by chlorine-containing organics are responsible for catalyst deactivation. The reactions of chloroethylene and acetylene with chlorine free radical can generate chlorine-containing organic species. SiO_2 and functional groups on activated carbon contribute to the generation of carbon deposition. No significant reduction in the total content of mercury was observed after catalyst deactivation, while there was mercury loss locally. The irreversible loss of HgCl_2 caused by volatilization, reduction and poisoning of elements S and P also can lead to catalyst deactivation. Si, Al, Ca and Fe oxides are scattered on the activated carbon. Active components are still uniformly absorbed on activated carbon after catalyst deactivation. 展开更多
关键词 Catalyst Activated carbon Deactivation Mercuric chloride Acetylene hydrochlorination Carbon deposition
下载PDF
Influence of surface strain on activity and selectivity of Pd-based catalysts for the hydrogenation of acetylene: A DFT study 被引量:1
4
作者 Ping Wang Bo Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第9期1493-1499,共7页
The effects of surface strain and subsurface promoters, which are both important factors in heterogeneous catalysis, on catalytic selectivity and activity of Pd are examined in this study by considering the selective ... The effects of surface strain and subsurface promoters, which are both important factors in heterogeneous catalysis, on catalytic selectivity and activity of Pd are examined in this study by considering the selective hydrogenation of acetylene as an example. Combined density functional theory calculations and microkinetic modeling reveal that the selectivity and activity of the Pd catalyst for acetylene hydrogenation can both be substantially influenced by the effects of Pd lattice strain variation and subsurface carbon species formation on the adsorption properties of the reactants and products. It is found that the adsorption energies of the reactants and products are, in general, linearly scaled with the lattice strain for both pristine and subsurface carbon atom-modified Pd(111) surfaces, except for the adsorption of C_2H_2 over Pd(111)-C. The activity for ethylene formation typically corresponds to the region of strong reactants adsorption in the volcano curve; such an effect of lattice strain and the presence of subsurface promoters can improve the activity of the catalyst through the weakening of the adsorption of reactants. The activity and selectivity for Pd(111)-C are always higher than those for the pristine Pd(111) surfaces with respect to ethylene formation. Based on the results obtained, Pd-based catalysts with shrinking lattice constants are suggested as good candidates for the selective hydrogenation of acetylene. A similar approach can be used to facilitate the future design of novel heterogeneous catalysts. 展开更多
关键词 SurfacestrainPd Acetylenehy drogenation SELECTIVITY Activity Subsurface Densityfunction altheory Microkineti modelling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部