The precursor sol of alumina was prepared by sol-gel method with aluminum nitrate and malic acid as raw materials.The effects of content of malic acid and polyvinylpyrrolidone (PVP) on sol spinnability were explored...The precursor sol of alumina was prepared by sol-gel method with aluminum nitrate and malic acid as raw materials.The effects of content of malic acid and polyvinylpyrrolidone (PVP) on sol spinnability were explored.The gel fibers with above 80 cm in length were obtained by mixing aluminum nitrate,malic acid and PVP on mass ratio of 10 3 1.5.Thermogravimetry-differential scanning calorimetry (TG-DSC),Fourier transform infrared (FTIR) spectrum,X-ray diffractometry (XRD),and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibers.The alumina fibers with a smooth surface and about 20μm in diameter were obtained by sintering at 1 200℃,and their main phase was indentified to be α-Al2O3.展开更多
Silver nanoplates,with average thickness about 5 nm and average tunable size from 40 to 500 nm,were synthesized via a simple room-temperature solution-phase chemical reduction method in the presence of appropriate con...Silver nanoplates,with average thickness about 5 nm and average tunable size from 40 to 500 nm,were synthesized via a simple room-temperature solution-phase chemical reduction method in the presence of appropriate concentration of trisodium citrate and silver seeds.The optical in-plane dipole plasmon resonance bands of these silver plates could be tuned from 520 to 1100 nm.Control experiments were explored for understanding of the growth mechanism.It is found that both the amount of citrate ions and the small silver seeds added to the growth solution are the key to controlling the silver nanoplates without changing their thickness and crystal structure.Small silver seeds are found to play an important role in the formation of large thin silver nanoplates when poly(vinylpyrrolidone)(PVP) are used as capping agent.展开更多
A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvi...A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvinylpyrrolidone(PVP) on the morphology and electrochemical performance of the composite were investigated. Powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and nitrogen adsorption-desorption experiment were employed to characterize the microstructures and morphologies of the composite. Meanwhile, the electrochemical performances of the samples were studied using cyclic voltammetry(CV), galvanostatic charge-discharge test and electrochemical impedance spectroscopy(EIS). The results show that the porous Co3O4/Cu O-CTAB nanoplates own the best performance and exhibits a high specific capacitance of 398 F/g at 1 A/g with almost 100% capacitance retention over 2000 cycles, and it retains 90% of capacitance at 10 A/g.展开更多
Microencapsulation of phase change materials(Micro PCMs) has been paid special attention because of their extensive applications in saving and releasing energy. Micro PCMs containing paraffin with a melting point of ...Microencapsulation of phase change materials(Micro PCMs) has been paid special attention because of their extensive applications in saving and releasing energy. Micro PCMs containing paraffin with a melting point of 55 ℃ in polystyrene-divinylbenzene(P(St-DVB)) were prepared by suspension-like polymerization. The characterization of microcapsules by FTIR, DSC and TG proved that paraffin had been successfully encapsulated and the proportion of encapsulated paraffin was 49.8%—58.5%. The effects of polyvinylpyrrolidone(PVP) with different molecular weights serving as the suspension stabilizer were investigated in detail. The results illustrated that the type of PVP had a significant influence on the particle size of Micro PCMs. The average diameter of Micro PCMs decreased with an increasing molecular weight of PVP. Moreover, the crosslinker-postaddition method was adopted in this study to improve the morphology of P(St-DVB) Micro PCMs. SEM images showed that when the DVB was added at the 2nd hour of polymerization the morphology of obtained P(St-DVB) Micro PCMs exhibited good sphericity since it could avoid the influence of cross-linker agent during the nucleation period.展开更多
In this study, a simple spraying method is used to prepare the transparent conductive films (TCFs) based on Ag nanowires (AgNWs). Polyvinylpyrrolidone (PVP) is introduced to modify the interface of substrate. Th...In this study, a simple spraying method is used to prepare the transparent conductive films (TCFs) based on Ag nanowires (AgNWs). Polyvinylpyrrolidone (PVP) is introduced to modify the interface of substrate. The transmittance and bending performance are improved by optimizing the number of spraying times and the solution concentration and controlling the annealing time. The spraying times of 20, the concentration of 2 mg/mL and the annealing time of 10 min are chosen to fabricate the PVP/AgNWs films. The transmittance of PVP/AgNWs films is 53.4%----67.9% at 380---780 nm, and the sheet resistance is 30 f~/n which is equivalent to that of commercial indium tin oxide (1TO). During cyclic bending tests to 500 cycles with bending radius of 5 ram, the changes of resistivity are negligible. The performance of PVP/AgNW transparent electrodes has little change after being exposed to the normal environment for 1 000 h. The adhesion to polymeric substrate and the ability to endure bending stress in AgNWs network films are both significantly improved by introducing PVP. Spraying method makes AgNWs form a stratified structure on large-area polymer substrates, and the vacuum annealing method is used to weld the AgNWs together at junctions and substrates, which can improve the electrical conductivity. The experimental results indicate that PVP/AgNW transpar- ent electrodes can be used as transparent conductive electrodes in flexible organic light emitting diodes (OLEDs).展开更多
基金Project(2010K10-21) supported by the Natural Science Foundation of Shaanxi Province,China
文摘The precursor sol of alumina was prepared by sol-gel method with aluminum nitrate and malic acid as raw materials.The effects of content of malic acid and polyvinylpyrrolidone (PVP) on sol spinnability were explored.The gel fibers with above 80 cm in length were obtained by mixing aluminum nitrate,malic acid and PVP on mass ratio of 10 3 1.5.Thermogravimetry-differential scanning calorimetry (TG-DSC),Fourier transform infrared (FTIR) spectrum,X-ray diffractometry (XRD),and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibers.The alumina fibers with a smooth surface and about 20μm in diameter were obtained by sintering at 1 200℃,and their main phase was indentified to be α-Al2O3.
基金Project (10804101) supported by the National Nature Science Foundation of ChinaProject (2007CB815102) supported by the National Basic Research Program of ChinaProject (2007B08007) supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics
文摘Silver nanoplates,with average thickness about 5 nm and average tunable size from 40 to 500 nm,were synthesized via a simple room-temperature solution-phase chemical reduction method in the presence of appropriate concentration of trisodium citrate and silver seeds.The optical in-plane dipole plasmon resonance bands of these silver plates could be tuned from 520 to 1100 nm.Control experiments were explored for understanding of the growth mechanism.It is found that both the amount of citrate ions and the small silver seeds added to the growth solution are the key to controlling the silver nanoplates without changing their thickness and crystal structure.Small silver seeds are found to play an important role in the formation of large thin silver nanoplates when poly(vinylpyrrolidone)(PVP) are used as capping agent.
基金Project(21471162)supported by the National Natural Science Foundation of ChinaProject(2014LY36)supported by the Science and Technology Project of Longyan CityChina
文摘A promising Co3O4/Cu O composite electrode material was successfully synthesized through a facile hydrothermal and calcination process. Effects of the surfactants hexadecyltrimethyl ammonium bromide(CTAB) and polyvinylpyrrolidone(PVP) on the morphology and electrochemical performance of the composite were investigated. Powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and nitrogen adsorption-desorption experiment were employed to characterize the microstructures and morphologies of the composite. Meanwhile, the electrochemical performances of the samples were studied using cyclic voltammetry(CV), galvanostatic charge-discharge test and electrochemical impedance spectroscopy(EIS). The results show that the porous Co3O4/Cu O-CTAB nanoplates own the best performance and exhibits a high specific capacitance of 398 F/g at 1 A/g with almost 100% capacitance retention over 2000 cycles, and it retains 90% of capacitance at 10 A/g.
基金financially supported by the National Natural Science Foundation of China (No. 20973022 and 11472048)the State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC)
文摘Microencapsulation of phase change materials(Micro PCMs) has been paid special attention because of their extensive applications in saving and releasing energy. Micro PCMs containing paraffin with a melting point of 55 ℃ in polystyrene-divinylbenzene(P(St-DVB)) were prepared by suspension-like polymerization. The characterization of microcapsules by FTIR, DSC and TG proved that paraffin had been successfully encapsulated and the proportion of encapsulated paraffin was 49.8%—58.5%. The effects of polyvinylpyrrolidone(PVP) with different molecular weights serving as the suspension stabilizer were investigated in detail. The results illustrated that the type of PVP had a significant influence on the particle size of Micro PCMs. The average diameter of Micro PCMs decreased with an increasing molecular weight of PVP. Moreover, the crosslinker-postaddition method was adopted in this study to improve the morphology of P(St-DVB) Micro PCMs. SEM images showed that when the DVB was added at the 2nd hour of polymerization the morphology of obtained P(St-DVB) Micro PCMs exhibited good sphericity since it could avoid the influence of cross-linker agent during the nucleation period.
基金supported by the National Natural Science Foundation of China(No.21174036)the National High Technology Research and Development Program of China(No.2012AA011901)the National Basic Research Program of China(No.2012CB723406)
文摘In this study, a simple spraying method is used to prepare the transparent conductive films (TCFs) based on Ag nanowires (AgNWs). Polyvinylpyrrolidone (PVP) is introduced to modify the interface of substrate. The transmittance and bending performance are improved by optimizing the number of spraying times and the solution concentration and controlling the annealing time. The spraying times of 20, the concentration of 2 mg/mL and the annealing time of 10 min are chosen to fabricate the PVP/AgNWs films. The transmittance of PVP/AgNWs films is 53.4%----67.9% at 380---780 nm, and the sheet resistance is 30 f~/n which is equivalent to that of commercial indium tin oxide (1TO). During cyclic bending tests to 500 cycles with bending radius of 5 ram, the changes of resistivity are negligible. The performance of PVP/AgNW transparent electrodes has little change after being exposed to the normal environment for 1 000 h. The adhesion to polymeric substrate and the ability to endure bending stress in AgNWs network films are both significantly improved by introducing PVP. Spraying method makes AgNWs form a stratified structure on large-area polymer substrates, and the vacuum annealing method is used to weld the AgNWs together at junctions and substrates, which can improve the electrical conductivity. The experimental results indicate that PVP/AgNW transpar- ent electrodes can be used as transparent conductive electrodes in flexible organic light emitting diodes (OLEDs).