A compound ethyl(5S,6R)-2-(4-methylphenyl)-6-[(1R)-tert-butyldimethylsilyloxyethy]-penem-3-carboxylate was synthesized through displacement,acylation and Wittig cyclization reaction of optically active material(3R,4R)...A compound ethyl(5S,6R)-2-(4-methylphenyl)-6-[(1R)-tert-butyldimethylsilyloxyethy]-penem-3-carboxylate was synthesized through displacement,acylation and Wittig cyclization reaction of optically active material(3R,4R)-3-[(1R)-tert-butyldimethylsilyloxyethyl]-4-acetoxy-2-azetidi-none(4AA)upon thionocarboxlic acid.The intermediates and the target product were characterized by 1HNMR,IR,elementary analysis and MS.展开更多
Different-sized hollow SiO2 spheres of 249–1348 nm in diameter were successfully prepared by using Na2SiO3 as the precursor and using polystyrene and polystyrene-methyl acrylic acid latexes as the templates. The diam...Different-sized hollow SiO2 spheres of 249–1348 nm in diameter were successfully prepared by using Na2SiO3 as the precursor and using polystyrene and polystyrene-methyl acrylic acid latexes as the templates. The diameter and shell thickness of the hollow SiO2 spheres increase with increasing the latex template diameter at a given mass ratio of SiO2 to latex template. The diameter and shell thickness of the hollow SiO2 spheres also increase with increasing the mass ratios of SiO2 to latex template. The presence of carboxylic acid groups on the surfaces of polystyrene-methyl acrylic acid latex templates favors the formation of dense and uniform SiO2 shells. The hollow SiO2 sphere is constructed by mesoporous shell with large specific surface area. When glyphosate is used as a release model chemical, glyphosate release rate is tuned by varying the shell thickness.展开更多
Core-shell structured SiO2/poly(N-isopropylacrylamide) (SiO2/PNIPAM) microspheres were successfully fabricated through hydrolysis and condensation reaction of tertraethyl orthosilicate (TEOS) on the surface of P...Core-shell structured SiO2/poly(N-isopropylacrylamide) (SiO2/PNIPAM) microspheres were successfully fabricated through hydrolysis and condensation reaction of tertraethyl orthosilicate (TEOS) on the surface of PNIPAM template at 50 ~C. The PNIPAM template can be easily removed by water at room temperature so that SiO2 hollow microspheres were finally obtained. The transmission electron microscope and scanning electron microscope observations indicated that SiO2 hollow microspheres with an average diameter of 150 nm can be formed only if there are enough concentration of PNIPAM and TEOS, and the hy- drolysis time of TEOS. FTIR analysis showed that part of PNIPAM remained on the wall of SiO2 because of the strong interaction between PNIPAM and silica. This work provides a clean and efficient way to prepare hollow microspheres.展开更多
Acrylate latex modified by vinyl triisopropoxy silane (C-1706) was synthesized by seeded emulsion polymerization with anionic emulsifier sodium dodecyl sulphonate(SDS) and nonionic emulsifier OP-10 as the multiple emu...Acrylate latex modified by vinyl triisopropoxy silane (C-1706) was synthesized by seeded emulsion polymerization with anionic emulsifier sodium dodecyl sulphonate(SDS) and nonionic emulsifier OP-10 as the multiple emulsifiers at (78±2) ℃. The effects of different factors, such as the emulsifier, C-1706 monomer and its feeding manner on the properties of acrylate latex modified by C-1706 were investigated. The particle size distribution and the structure, the configuration, the weather durability and stain resistance of copolymer latex were characterized by particle size analyzer, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope(TEM), scanning electron microscope(SEM) and ultraviolet aging instrument respectively. The results show that SDS to OP-10 as multiple emulsifiers can lead to coordinated efficiency, the optimal emulsifier dosage is 2.4%?3.2%(mass fraction), and the mass ratio of SDS to OP-10 is 1?1? 1?2. The seeded emulsion polymerization can effectively introduce a organic-siloxane bonding in a macromolecule inter polymer, and the obtained acrylate latex modified by organic-siloxane possesses narrow distribution of particle size with mean diameter of 51.8?76.6 nm and has the excellent properties in weather durability and stain-resistance especially.展开更多
Vapor-liquid equilibrium (VLE) for a ternary system of methyldichlorosilane + methylvinyldichlorosi-lane + toluene and constituent binary systems were measured at 101.3kPa using a new type of magnetical pump-ebulliome...Vapor-liquid equilibrium (VLE) for a ternary system of methyldichlorosilane + methylvinyldichlorosi-lane + toluene and constituent binary systems were measured at 101.3kPa using a new type of magnetical pump-ebulliometer. The equilibrium compositions of the vapor phase of binary systems were calculated indirectly from the total pressure-temperature-liquid composition (pTx). The experimental data were correlated with the Wilson and NRTL(non-random two liquid) equations. The parameters of the Wilson model were employed to predict the ternary VLE data. The calculated boiling points were in good agreement with the experimental ones.展开更多
A stable silica sol with 3-5 nm in diameter, which can form homogeneous film without crack, was prepared and characterized. Then, the inorganic-organic hybrid aqueous dispersion composed of such a silica sol and an em...A stable silica sol with 3-5 nm in diameter, which can form homogeneous film without crack, was prepared and characterized. Then, the inorganic-organic hybrid aqueous dispersion composed of such a silica sol and an emulsion of styrene (St) and acrylate (Ac) copolymer was prepared and the hybrid effect between the silica sol and poly(St-co-Ac) was observed by Fourier transform infra-red (FT-IR) spectroscope. The toughness of the film prepared by this kind of hybrid aqueous dispersion was excellent, as it was enhanced appreciably by commixing with a small amount of poly(St-co-Ac) emulsion. Some amino-polysiloxane modified hybrid aqueous dispersions were also prepared and the properties of the modified dispersions and their films were investigated. The experimental results showed that the film prepared with such an amino-polysiloxane modified hybrid dispersion exhibited excellent hydrophobicity and low surface energy after heat treatment for 1.5 h, during which the formation of the graft copolymer was observed. The surface energy of this film decreases as a result of the enrichment of siloxane segments on the film surface.展开更多
Pervaporation(PV),as an environmental friendly and energy-saving separation technology,has been received increasing attention in recent years.This article reviews the preparation and application of macroporous ceramic...Pervaporation(PV),as an environmental friendly and energy-saving separation technology,has been received increasing attention in recent years.This article reviews the preparation and application of macroporous ceramic-supported polymer composite pervaporation membranes.The separation materials of polymer/ceramic composite membranes presented here include hydrophobic polydimethylsiloxane(PDMS) and hydrophilic poly(vinyl alcohol)(PVA),chitosan(CS) and polyelectrolytes.The effects of ceramic support treatment,polymer solution properties,interfacial adhesion and incorporating or blending modification on the membrane structure and PV performance are discussed.Two in-situ characterization methods developed for polymer/ceramic composite membranes are also covered in the discussion.The applications of these composite membranes in pervaporation process are summarized as well,which contain the bio-fuels recovery,gasoline desulfuration and PV coupled proc-ess using PDMS/ceramic composite membrane,and dehydration of alcohols and esters using ceramic-supported PVA or PVA-CS composite membrane.Finally,a brief conclusion remark on polymer/ceramic composite mem-branes is given and possible future research is outlined.展开更多
SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorpti...SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorption, X-ray diffraction, and scanning electron microscopy measurements. The chemical thermodynamics process is discussed. The whole reaction can be separated into four steps. The carburizing of SiO is the key step of whole reaction. The main reaction-sequence is figured out based on Gibbs free energy and equilibrium constant. Flowing Ar is necessary to continue the progress of whole reaction by means of carrying out accumulating gaseous resultants. The film is very useful for application in a variety of MOS-based devices for its silica/SiC/Si(111) structure, in which the silica layer can be removed thoroughly by the standard RCA cleaning process.展开更多
This study is to analyze the influence of the modifier, 5~25 wt % titanium tetrabutoxide (TBO), on the hardness and elastic modulus of the films based on SSO deriving from hydrolytic condensation of (3-glycidoxypropy...This study is to analyze the influence of the modifier, 5~25 wt % titanium tetrabutoxide (TBO), on the hardness and elastic modulus of the films based on SSO deriving from hydrolytic condensation of (3-glycidoxypropyl)trimethoxysilane (GPMS) and vinyltrimethoxysilane (VMS), by the continuous stiffness measurement (CSM) technique of an instrumented-indentation testing (IIT) device. Films were synthesized by adding the stoichiometric amount of ethylenediamine (EDA) and benzoyl proxide (BPO) to SSO solutions in ethanol, dip-coating over glass substrates, and curing using an appropriate thermal cycle. Intrinsic values of hardness and elastic modulus were determined with the average values in “plateau region” from “four-layer” explanation. And the brittle index of the modified coating systems was analyzed.展开更多
Sorption isotherm of chloroform in polyvinyl dimethylsiloxane (PVDMS) polymer film was measured via the gravimetric method, and this film was confirmed experimentally to be good membrane material to recover chloroform...Sorption isotherm of chloroform in polyvinyl dimethylsiloxane (PVDMS) polymer film was measured via the gravimetric method, and this film was confirmed experimentally to be good membrane material to recover chloroform from gas stream with high sorption capacity. A new PVDMS-Al2O3 composite hollow fibre membrane was further prepared by coating a PVDMS film on the outer surface of Al2O3 hollow fibre porpous substrate prepared by a dry/wet phase inversion method. Microstructure of the composite membranes was examined by scanning electron microscopy (SEM), indicating the PVDMS coating layer was uniform, free of defects, and around 15μm thick. Performance of the PVDMS-Al2O3 composite hollow fibre membranes for chloroform recovery was investigated. By comparing the experimental data that derived from a mathematical model, the permeabilities of chloroform and nitrogen in the PVDMS polymer membrane were obtained. The effects of temperature and feed flow rate on the chloroform recovery and permeate concentration were investigated both experimentally and theoretically.展开更多
Abstract: The search for "new materials" to manufacture building elements for economical housing is the aim of this work. These materials are the following recycled plastics: Low-density polyethylene (LDPE), rec...Abstract: The search for "new materials" to manufacture building elements for economical housing is the aim of this work. These materials are the following recycled plastics: Low-density polyethylene (LDPE), recycled out of discarded soft drink packs: Polyethylene-terephthalate (PET), recycled out of discarded soft drink bottles; and several plastics, from the printed films used like packages of candies (remainder of production plant by faults in the thickness of the films or in the inked process of themt. These conveniently grounded plastics were taken as "arids" to be mixed with Normal Portland cement, replacing heavy sand and gravel habitually used in these mixtures. These materials are used in constructive elements such as bricks, blocks and plates for economical houses closures or traditional construction. The developed constructive elements offer high thermal insulation, so they can be used in closures with a smaller thickness than conventional bricks and blocks. Besides, they have a lower specific weight than these traditiunal constructive elements. Recycling means lowering costs, making part of the environment contaminating waste useful and providing the unemployed and/or unqualified work force with jobs through uncomplicated technologies. Therefore, this recycling technology has an economic as well as an ecological purpose.展开更多
Vapor-liquid equilibrium data of hexamethyl disiloxane+vinyl acetate system at 101.3kPa were measured by using double circulating vapor-liquid equilibrium still.The thermodynamic consistency of the VLE data was examin...Vapor-liquid equilibrium data of hexamethyl disiloxane+vinyl acetate system at 101.3kPa were measured by using double circulating vapor-liquid equilibrium still.The thermodynamic consistency of the VLE data was examined by Herrington method.Experimental data was correlated by non-random two-liquid(NRTL),Wilson and universal quasichemical(UNIQUAC)parameter models.All the models satisfactorily correlated with the VLE data.The result showed that the NRTL model was the most suitable one to represent experimental data satisfactorily.The system had a minimum temperature azeotrope at 345.71 K and the mole azeotropic composition was 0.0541.展开更多
We report on the ability to create complex 3D flower-like SiO2 in vitro via CaCO3 micropar- icles supported by polyethyleneimine mediated biosilicification under experimentally altered chemical influences. The morphol...We report on the ability to create complex 3D flower-like SiO2 in vitro via CaCO3 micropar- icles supported by polyethyleneimine mediated biosilicification under experimentally altered chemical influences. The morphology, structure, composition of the product have been inves- tigated with the X-ray photoelectron spectrum, scanning electron microscope, transmission electron microscope, and energy-dispersive spectroscopy. Tile overall morphologies could be controlled to shift from a characteristic network of flower-like silica sphere to a sheet-like structure by adjusting physical adsorption of different amount of polyethyleneimine onto the surface of the CaCO3 microparticles.展开更多
A facile and user friendly technique to immobilize the late-transition metal complexes on spherical MgCl2/SiO2/THF support has been developed. The spherical MgCl2/SiO2/THF-supported late-transition metal catalysts 2,6...A facile and user friendly technique to immobilize the late-transition metal complexes on spherical MgCl2/SiO2/THF support has been developed. The spherical MgCl2/SiO2/THF-supported late-transition metal catalysts 2,6-bis-[1-(2,6-dimethylphenylimino)ethyl]pyridine iron(II) dichloride(SC-A) and 1,4-bis(2,6-dimethylphenyl)- acenaphthene diimine nickel(II) dibromide(SC-B) for ethylene polymerization has been prepared by spray-drying technique using tetrahydrofuran suspension containing MgCl2, SiO2 and late-transition metal complexes. The catalysts were characterized by BET, XRD, SEM and the polymers were analyzed using GPC, DSC and 13C-NMR. The test results show that spray-drying is a very effective method for immobilizing late-transition metal catalysts for ethylene polymerization. Among six kinds of cocatalysts for olefin polymerization, TMA and TEA were confirmed to be more effective than other compounds for the ethylene polymerization system using the catalyst SC-A. For the case of the catalyst SC-B, DEAC showed the best performance as cocatalysts in ethylene polymerization. The replication of the catalyst morphology was found in the resultant polyethylene.展开更多
Although remarkable progress has been witnessed in mimicking the nacre-like architecture in laboratory,it remains a great challenge for understanding the unique balancing mechanism of toughness and strength in biologi...Although remarkable progress has been witnessed in mimicking the nacre-like architecture in laboratory,it remains a great challenge for understanding the unique balancing mechanism of toughness and strength in biological materials. Here,taking advantage of the synergistic effect of different dimensional nanoscale building blocks,we fabricate nacre-like films that reconcile high strength and toughness.The obtained ternary lamellar composite films are constructed by one-dimensional xonotlite nanowires and two-dimensional montmorillonite nanosheets with the assistance of poly(vinyl alcohol). The ternary composite films show high strength((241.8±10.2)MPa) and toughness((5.85±0.46) MJ m^-3),both of which are higher than that of the single nanofibrillar xonotlite network films or the binary montmorillonite/poly(vinyl alcohol) composite films. The excellent mechanical properties of the nacre-like ternary composite films are aroused by the synergistic toughening mechanism of the different dimensional building blocks. This strategy provides a facile approach to integrate the nacre-like composite films with potential applications in tissue engineering scaffold,strong air barrier coatings,and fire-retardant packing materials.展开更多
文摘A compound ethyl(5S,6R)-2-(4-methylphenyl)-6-[(1R)-tert-butyldimethylsilyloxyethy]-penem-3-carboxylate was synthesized through displacement,acylation and Wittig cyclization reaction of optically active material(3R,4R)-3-[(1R)-tert-butyldimethylsilyloxyethyl]-4-acetoxy-2-azetidi-none(4AA)upon thionocarboxlic acid.The intermediates and the target product were characterized by 1HNMR,IR,elementary analysis and MS.
基金Projects (11KJB530002, CX10B-259Z) supported by Research Funds from Jiangsu Provincial Department of Education, ChinaProject (10zxfk35) supported by Sichuan Province Nonmetallic Composites and Functional Materials Key Laboratory Project, China
文摘Different-sized hollow SiO2 spheres of 249–1348 nm in diameter were successfully prepared by using Na2SiO3 as the precursor and using polystyrene and polystyrene-methyl acrylic acid latexes as the templates. The diameter and shell thickness of the hollow SiO2 spheres increase with increasing the latex template diameter at a given mass ratio of SiO2 to latex template. The diameter and shell thickness of the hollow SiO2 spheres also increase with increasing the mass ratios of SiO2 to latex template. The presence of carboxylic acid groups on the surfaces of polystyrene-methyl acrylic acid latex templates favors the formation of dense and uniform SiO2 shells. The hollow SiO2 sphere is constructed by mesoporous shell with large specific surface area. When glyphosate is used as a release model chemical, glyphosate release rate is tuned by varying the shell thickness.
文摘Core-shell structured SiO2/poly(N-isopropylacrylamide) (SiO2/PNIPAM) microspheres were successfully fabricated through hydrolysis and condensation reaction of tertraethyl orthosilicate (TEOS) on the surface of PNIPAM template at 50 ~C. The PNIPAM template can be easily removed by water at room temperature so that SiO2 hollow microspheres were finally obtained. The transmission electron microscope and scanning electron microscope observations indicated that SiO2 hollow microspheres with an average diameter of 150 nm can be formed only if there are enough concentration of PNIPAM and TEOS, and the hy- drolysis time of TEOS. FTIR analysis showed that part of PNIPAM remained on the wall of SiO2 because of the strong interaction between PNIPAM and silica. This work provides a clean and efficient way to prepare hollow microspheres.
基金Project(2003B10506) supported by Science and Technology Department of Guangdong Province, China
文摘Acrylate latex modified by vinyl triisopropoxy silane (C-1706) was synthesized by seeded emulsion polymerization with anionic emulsifier sodium dodecyl sulphonate(SDS) and nonionic emulsifier OP-10 as the multiple emulsifiers at (78±2) ℃. The effects of different factors, such as the emulsifier, C-1706 monomer and its feeding manner on the properties of acrylate latex modified by C-1706 were investigated. The particle size distribution and the structure, the configuration, the weather durability and stain resistance of copolymer latex were characterized by particle size analyzer, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope(TEM), scanning electron microscope(SEM) and ultraviolet aging instrument respectively. The results show that SDS to OP-10 as multiple emulsifiers can lead to coordinated efficiency, the optimal emulsifier dosage is 2.4%?3.2%(mass fraction), and the mass ratio of SDS to OP-10 is 1?1? 1?2. The seeded emulsion polymerization can effectively introduce a organic-siloxane bonding in a macromolecule inter polymer, and the obtained acrylate latex modified by organic-siloxane possesses narrow distribution of particle size with mean diameter of 51.8?76.6 nm and has the excellent properties in weather durability and stain-resistance especially.
基金Supported by the Natural Science Foundation of Jiangxi Province(No.0020019).
文摘Vapor-liquid equilibrium (VLE) for a ternary system of methyldichlorosilane + methylvinyldichlorosi-lane + toluene and constituent binary systems were measured at 101.3kPa using a new type of magnetical pump-ebulliometer. The equilibrium compositions of the vapor phase of binary systems were calculated indirectly from the total pressure-temperature-liquid composition (pTx). The experimental data were correlated with the Wilson and NRTL(non-random two liquid) equations. The parameters of the Wilson model were employed to predict the ternary VLE data. The calculated boiling points were in good agreement with the experimental ones.
基金Supported by Science and Technology Commission of Shanghai Municipality (No. 0212nm008).
文摘A stable silica sol with 3-5 nm in diameter, which can form homogeneous film without crack, was prepared and characterized. Then, the inorganic-organic hybrid aqueous dispersion composed of such a silica sol and an emulsion of styrene (St) and acrylate (Ac) copolymer was prepared and the hybrid effect between the silica sol and poly(St-co-Ac) was observed by Fourier transform infra-red (FT-IR) spectroscope. The toughness of the film prepared by this kind of hybrid aqueous dispersion was excellent, as it was enhanced appreciably by commixing with a small amount of poly(St-co-Ac) emulsion. Some amino-polysiloxane modified hybrid aqueous dispersions were also prepared and the properties of the modified dispersions and their films were investigated. The experimental results showed that the film prepared with such an amino-polysiloxane modified hybrid dispersion exhibited excellent hydrophobicity and low surface energy after heat treatment for 1.5 h, during which the formation of the graft copolymer was observed. The surface energy of this film decreases as a result of the enrichment of siloxane segments on the film surface.
文摘Pervaporation(PV),as an environmental friendly and energy-saving separation technology,has been received increasing attention in recent years.This article reviews the preparation and application of macroporous ceramic-supported polymer composite pervaporation membranes.The separation materials of polymer/ceramic composite membranes presented here include hydrophobic polydimethylsiloxane(PDMS) and hydrophilic poly(vinyl alcohol)(PVA),chitosan(CS) and polyelectrolytes.The effects of ceramic support treatment,polymer solution properties,interfacial adhesion and incorporating or blending modification on the membrane structure and PV performance are discussed.Two in-situ characterization methods developed for polymer/ceramic composite membranes are also covered in the discussion.The applications of these composite membranes in pervaporation process are summarized as well,which contain the bio-fuels recovery,gasoline desulfuration and PV coupled proc-ess using PDMS/ceramic composite membrane,and dehydration of alcohols and esters using ceramic-supported PVA or PVA-CS composite membrane.Finally,a brief conclusion remark on polymer/ceramic composite mem-branes is given and possible future research is outlined.
基金This work was supported by the National Natural Science Foundation of China (No.50172044).
文摘SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorption, X-ray diffraction, and scanning electron microscopy measurements. The chemical thermodynamics process is discussed. The whole reaction can be separated into four steps. The carburizing of SiO is the key step of whole reaction. The main reaction-sequence is figured out based on Gibbs free energy and equilibrium constant. Flowing Ar is necessary to continue the progress of whole reaction by means of carrying out accumulating gaseous resultants. The film is very useful for application in a variety of MOS-based devices for its silica/SiC/Si(111) structure, in which the silica layer can be removed thoroughly by the standard RCA cleaning process.
文摘This study is to analyze the influence of the modifier, 5~25 wt % titanium tetrabutoxide (TBO), on the hardness and elastic modulus of the films based on SSO deriving from hydrolytic condensation of (3-glycidoxypropyl)trimethoxysilane (GPMS) and vinyltrimethoxysilane (VMS), by the continuous stiffness measurement (CSM) technique of an instrumented-indentation testing (IIT) device. Films were synthesized by adding the stoichiometric amount of ethylenediamine (EDA) and benzoyl proxide (BPO) to SSO solutions in ethanol, dip-coating over glass substrates, and curing using an appropriate thermal cycle. Intrinsic values of hardness and elastic modulus were determined with the average values in “plateau region” from “four-layer” explanation. And the brittle index of the modified coating systems was analyzed.
文摘Sorption isotherm of chloroform in polyvinyl dimethylsiloxane (PVDMS) polymer film was measured via the gravimetric method, and this film was confirmed experimentally to be good membrane material to recover chloroform from gas stream with high sorption capacity. A new PVDMS-Al2O3 composite hollow fibre membrane was further prepared by coating a PVDMS film on the outer surface of Al2O3 hollow fibre porpous substrate prepared by a dry/wet phase inversion method. Microstructure of the composite membranes was examined by scanning electron microscopy (SEM), indicating the PVDMS coating layer was uniform, free of defects, and around 15μm thick. Performance of the PVDMS-Al2O3 composite hollow fibre membranes for chloroform recovery was investigated. By comparing the experimental data that derived from a mathematical model, the permeabilities of chloroform and nitrogen in the PVDMS polymer membrane were obtained. The effects of temperature and feed flow rate on the chloroform recovery and permeate concentration were investigated both experimentally and theoretically.
文摘Abstract: The search for "new materials" to manufacture building elements for economical housing is the aim of this work. These materials are the following recycled plastics: Low-density polyethylene (LDPE), recycled out of discarded soft drink packs: Polyethylene-terephthalate (PET), recycled out of discarded soft drink bottles; and several plastics, from the printed films used like packages of candies (remainder of production plant by faults in the thickness of the films or in the inked process of themt. These conveniently grounded plastics were taken as "arids" to be mixed with Normal Portland cement, replacing heavy sand and gravel habitually used in these mixtures. These materials are used in constructive elements such as bricks, blocks and plates for economical houses closures or traditional construction. The developed constructive elements offer high thermal insulation, so they can be used in closures with a smaller thickness than conventional bricks and blocks. Besides, they have a lower specific weight than these traditiunal constructive elements. Recycling means lowering costs, making part of the environment contaminating waste useful and providing the unemployed and/or unqualified work force with jobs through uncomplicated technologies. Therefore, this recycling technology has an economic as well as an ecological purpose.
文摘Vapor-liquid equilibrium data of hexamethyl disiloxane+vinyl acetate system at 101.3kPa were measured by using double circulating vapor-liquid equilibrium still.The thermodynamic consistency of the VLE data was examined by Herrington method.Experimental data was correlated by non-random two-liquid(NRTL),Wilson and universal quasichemical(UNIQUAC)parameter models.All the models satisfactorily correlated with the VLE data.The result showed that the NRTL model was the most suitable one to represent experimental data satisfactorily.The system had a minimum temperature azeotrope at 345.71 K and the mole azeotropic composition was 0.0541.
文摘We report on the ability to create complex 3D flower-like SiO2 in vitro via CaCO3 micropar- icles supported by polyethyleneimine mediated biosilicification under experimentally altered chemical influences. The morphology, structure, composition of the product have been inves- tigated with the X-ray photoelectron spectrum, scanning electron microscope, transmission electron microscope, and energy-dispersive spectroscopy. Tile overall morphologies could be controlled to shift from a characteristic network of flower-like silica sphere to a sheet-like structure by adjusting physical adsorption of different amount of polyethyleneimine onto the surface of the CaCO3 microparticles.
基金supported by the National Natural Science Foundation of China (Grant No.U1162114)the Science Foundation of Tianjin University of Science & Technology (20090420)
文摘A facile and user friendly technique to immobilize the late-transition metal complexes on spherical MgCl2/SiO2/THF support has been developed. The spherical MgCl2/SiO2/THF-supported late-transition metal catalysts 2,6-bis-[1-(2,6-dimethylphenylimino)ethyl]pyridine iron(II) dichloride(SC-A) and 1,4-bis(2,6-dimethylphenyl)- acenaphthene diimine nickel(II) dibromide(SC-B) for ethylene polymerization has been prepared by spray-drying technique using tetrahydrofuran suspension containing MgCl2, SiO2 and late-transition metal complexes. The catalysts were characterized by BET, XRD, SEM and the polymers were analyzed using GPC, DSC and 13C-NMR. The test results show that spray-drying is a very effective method for immobilizing late-transition metal catalysts for ethylene polymerization. Among six kinds of cocatalysts for olefin polymerization, TMA and TEA were confirmed to be more effective than other compounds for the ethylene polymerization system using the catalyst SC-A. For the case of the catalyst SC-B, DEAC showed the best performance as cocatalysts in ethylene polymerization. The replication of the catalyst morphology was found in the resultant polyethylene.
基金supported by the National Natural Science Foundation of China (51732011 and 21431006)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (21521001)+1 种基金the National Basic Research Program of China (2014CB931800)the Users with Excellence and Scientific Research Grant of Hefei Science Center of Chinese Academy of Sciences (2015HSC-UE007 and 2015SRG-HSC038)
文摘Although remarkable progress has been witnessed in mimicking the nacre-like architecture in laboratory,it remains a great challenge for understanding the unique balancing mechanism of toughness and strength in biological materials. Here,taking advantage of the synergistic effect of different dimensional nanoscale building blocks,we fabricate nacre-like films that reconcile high strength and toughness.The obtained ternary lamellar composite films are constructed by one-dimensional xonotlite nanowires and two-dimensional montmorillonite nanosheets with the assistance of poly(vinyl alcohol). The ternary composite films show high strength((241.8±10.2)MPa) and toughness((5.85±0.46) MJ m^-3),both of which are higher than that of the single nanofibrillar xonotlite network films or the binary montmorillonite/poly(vinyl alcohol) composite films. The excellent mechanical properties of the nacre-like ternary composite films are aroused by the synergistic toughening mechanism of the different dimensional building blocks. This strategy provides a facile approach to integrate the nacre-like composite films with potential applications in tissue engineering scaffold,strong air barrier coatings,and fire-retardant packing materials.