Temperature-sensitive hydrogel—poly(N-isopropyl acrylamide) (PNIPA) was prepared and applied to protein refolding. PNIPA gel disks and gel particles were synthesized by the solution polymerization and inverse suspens...Temperature-sensitive hydrogel—poly(N-isopropyl acrylamide) (PNIPA) was prepared and applied to protein refolding. PNIPA gel disks and gel particles were synthesized by the solution polymerization and inverse suspension polymerization respectively. The swelling kinetics of the gels was also studied. With these prepared PNIPA gels, the model protein lysozyme was renatured. Within 24h, PNIPA gel disks improved the yield of lysozyme activity by 49.3% from 3375.2U·mg^-1 to 5038.8U·mg^-1. With the addition of faster response PNIPA gel beads, the total lysozyme activity recovery was about 68.98% in 3h, as compared with 42.03% by simple batch dilution. The novel refolding system with PNIPA enables efficient refolding especially at high protein concentrations. Discussion about the mechanism revealed that when PNIPA gels were added into the refolding buffer, the hydrophobic interactions between denatured proteins and polymer gels could prevent the aggregation of refolding intermediates, thus enhanced the protein renaturation.展开更多
基金the National Natural Science Foundation of China (No. 20276065).
文摘Temperature-sensitive hydrogel—poly(N-isopropyl acrylamide) (PNIPA) was prepared and applied to protein refolding. PNIPA gel disks and gel particles were synthesized by the solution polymerization and inverse suspension polymerization respectively. The swelling kinetics of the gels was also studied. With these prepared PNIPA gels, the model protein lysozyme was renatured. Within 24h, PNIPA gel disks improved the yield of lysozyme activity by 49.3% from 3375.2U·mg^-1 to 5038.8U·mg^-1. With the addition of faster response PNIPA gel beads, the total lysozyme activity recovery was about 68.98% in 3h, as compared with 42.03% by simple batch dilution. The novel refolding system with PNIPA enables efficient refolding especially at high protein concentrations. Discussion about the mechanism revealed that when PNIPA gels were added into the refolding buffer, the hydrophobic interactions between denatured proteins and polymer gels could prevent the aggregation of refolding intermediates, thus enhanced the protein renaturation.