Ethylene glycol monoethyl ether acetate (EGEA), an excellent solvent, is prepared with ethylene oxide (EO) and ethyl acetate (EA) in a tubular reactor under suitable reaction condition. The single circulation yield ca...Ethylene glycol monoethyl ether acetate (EGEA), an excellent solvent, is prepared with ethylene oxide (EO) and ethyl acetate (EA) in a tubular reactor under suitable reaction condition. The single circulation yield can reach 81%. This technology is not only safe but also makes it possible to continuously produce EGEA in industry,with low content of high boiling point by-products.展开更多
A chemical investigation of the ethyl acetate extract of the fermentation broth of Alternaria tenuissima EN- 192, an endophytic fungus obtained from the stems of the marine mangrove plant Rhizophora stylosa, resulted ...A chemical investigation of the ethyl acetate extract of the fermentation broth of Alternaria tenuissima EN- 192, an endophytic fungus obtained from the stems of the marine mangrove plant Rhizophora stylosa, resulted in the isolation of nine known secondary metabolites, including four indole-diterpenoids: penijanthine A (1), paspaline (2), paspalinine (3), and penitrem A (4); three tricycloalternarene derivatives: tricycloalternarene 3a (5), tricycloalternarene lb (6), and tricycloalternarene 2b (7); and two alternariol congeners: djalonensone (8) and alternariol (9). The chemical structures of these metabolites were characterized through a combination of detailed spectroscopic analyses and their comparison with reports from the literature. The inhibitory activities of each isolated compound against four bacteria were evaluated and compounds 5 and 8 displayed moderate activity against the aquaculture pathogenic bacterium Vibrio anguillarum, with inhibition zone diameters of 8 and 9 mm, respectively, at 100 gg/disk. To the best of our knowledge, this is the first report on the secondary metabolites of mangrove-derived Alternaria tenuissima and also the first report of the isolation ofindole-diterpenoids from fungal genus Alternaria.展开更多
文摘Ethylene glycol monoethyl ether acetate (EGEA), an excellent solvent, is prepared with ethylene oxide (EO) and ethyl acetate (EA) in a tubular reactor under suitable reaction condition. The single circulation yield can reach 81%. This technology is not only safe but also makes it possible to continuously produce EGEA in industry,with low content of high boiling point by-products.
基金Supported by the National Natural Science Foundation of China(Nos.30910103914,31270403)the Ministry of Science and Technology(No.2010CB833802)
文摘A chemical investigation of the ethyl acetate extract of the fermentation broth of Alternaria tenuissima EN- 192, an endophytic fungus obtained from the stems of the marine mangrove plant Rhizophora stylosa, resulted in the isolation of nine known secondary metabolites, including four indole-diterpenoids: penijanthine A (1), paspaline (2), paspalinine (3), and penitrem A (4); three tricycloalternarene derivatives: tricycloalternarene 3a (5), tricycloalternarene lb (6), and tricycloalternarene 2b (7); and two alternariol congeners: djalonensone (8) and alternariol (9). The chemical structures of these metabolites were characterized through a combination of detailed spectroscopic analyses and their comparison with reports from the literature. The inhibitory activities of each isolated compound against four bacteria were evaluated and compounds 5 and 8 displayed moderate activity against the aquaculture pathogenic bacterium Vibrio anguillarum, with inhibition zone diameters of 8 and 9 mm, respectively, at 100 gg/disk. To the best of our knowledge, this is the first report on the secondary metabolites of mangrove-derived Alternaria tenuissima and also the first report of the isolation ofindole-diterpenoids from fungal genus Alternaria.