A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the acti...A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the active center of Rh-TPISP for the carbonylation reaction based on detailed Rh L3-edge X-ray absorption near edge structure(XANES),X-ray photoelectron spectroscopy(XPS),and Rh extended X-ray absorption fine structure(EXAFS)analyses.As the highlight of this study,Rh-TPISP displayed distinctly higher activity for heterogeneous ethanol carbonylation than the reported catalytic systems in which[Rh(CO)_(2)I_(2)]^(-)is the traditional active center.A TOF of 350 h^(-1)was obtained for the reaction over[Rh(CO)I_(3)]^(2-),with>95%propionyl selectivity at 3.5 MPa and 468 K.No deactivation was detected during a near 1000 h running test.The more electron-rich Rh center was thought to be crucial for explaining the superior activity and selectivity of Rh-TPISP,and the formation of two ionic bonds between[Rh(CO)I_(3)]^(2-)and the cationic P(V)framework([P]^(+))of the polymer was suggested to play a key role in firmly immobilizing the active species to prevent Rh leaching.展开更多
A novel heterogeneous Ni-Zn/C catalyst was used for vapor-phasecarbonylation of ethanol under at- mospheric pressure. Experimentswere designed with the elimination of mass-transfer resistances. Thedata of primary reac...A novel heterogeneous Ni-Zn/C catalyst was used for vapor-phasecarbonylation of ethanol under at- mospheric pressure. Experimentswere designed with the elimination of mass-transfer resistances. Thedata of primary reactions in the carbonylation were collected with adifferential tubular reactor. Power law rate models were employed toexpress the conversion of ethanol and the yields of ethyl propionateand diethyl ether. The results obtained with the models were inagreement with the experimental data.展开更多
文摘A single-Rh-site catalyst(Rh-TPISP)that was ionically-embedded on a P(V)quaternary phosphonium porous polymer was evaluated for heterogeneous ethanol carbonylation.The[Rh(CO)I_(3)]^(2-)unit was proposed to be the active center of Rh-TPISP for the carbonylation reaction based on detailed Rh L3-edge X-ray absorption near edge structure(XANES),X-ray photoelectron spectroscopy(XPS),and Rh extended X-ray absorption fine structure(EXAFS)analyses.As the highlight of this study,Rh-TPISP displayed distinctly higher activity for heterogeneous ethanol carbonylation than the reported catalytic systems in which[Rh(CO)_(2)I_(2)]^(-)is the traditional active center.A TOF of 350 h^(-1)was obtained for the reaction over[Rh(CO)I_(3)]^(2-),with>95%propionyl selectivity at 3.5 MPa and 468 K.No deactivation was detected during a near 1000 h running test.The more electron-rich Rh center was thought to be crucial for explaining the superior activity and selectivity of Rh-TPISP,and the formation of two ionic bonds between[Rh(CO)I_(3)]^(2-)and the cationic P(V)framework([P]^(+))of the polymer was suggested to play a key role in firmly immobilizing the active species to prevent Rh leaching.
基金the Guangdong Provincial Natural Science Foundation of China (No. 970438).
文摘A novel heterogeneous Ni-Zn/C catalyst was used for vapor-phasecarbonylation of ethanol under at- mospheric pressure. Experimentswere designed with the elimination of mass-transfer resistances. Thedata of primary reactions in the carbonylation were collected with adifferential tubular reactor. Power law rate models were employed toexpress the conversion of ethanol and the yields of ethyl propionateand diethyl ether. The results obtained with the models were inagreement with the experimental data.