Hafnium ethoxide was synthesized using electrochemical method.Optimization experiments were used to optimizevarious parameters namely Et4NBr concentration(c):0.01?0.06mol/L,solution temperature(t):30?78°C,polar d...Hafnium ethoxide was synthesized using electrochemical method.Optimization experiments were used to optimizevarious parameters namely Et4NBr concentration(c):0.01?0.06mol/L,solution temperature(t):30?78°C,polar distance(D):2.0?4.0cm and current density(J):100?400A/m2.The electrolytic products obtained under optimum conditions of c=0.04mol/L,t=78°C,D=2.0cm and J=100A/m2were further isolated by vacuum distillation under5kPa.The product was characterized byFourier transform infrared(FT-IR)spectra,nuclear magnetic resonance(NMR)spectra.The results indicated that the product washafnium ethoxide.ICP analysis suggested that the content of hafnium ethoxide in the final product exceeded99.997%.Thermalproperties of the product were analyzed by TG/DTG.The vaporization enthalpy of hafnium ethoxide was found to be79.1kJ/mol.The result confirmed that hafnium ethoxide was suitable for the preparation of hafnium oxide by atomic layer deposition.展开更多
基金Project(51374254) supported by the National Natural Science Foundation of China
文摘Hafnium ethoxide was synthesized using electrochemical method.Optimization experiments were used to optimizevarious parameters namely Et4NBr concentration(c):0.01?0.06mol/L,solution temperature(t):30?78°C,polar distance(D):2.0?4.0cm and current density(J):100?400A/m2.The electrolytic products obtained under optimum conditions of c=0.04mol/L,t=78°C,D=2.0cm and J=100A/m2were further isolated by vacuum distillation under5kPa.The product was characterized byFourier transform infrared(FT-IR)spectra,nuclear magnetic resonance(NMR)spectra.The results indicated that the product washafnium ethoxide.ICP analysis suggested that the content of hafnium ethoxide in the final product exceeded99.997%.Thermalproperties of the product were analyzed by TG/DTG.The vaporization enthalpy of hafnium ethoxide was found to be79.1kJ/mol.The result confirmed that hafnium ethoxide was suitable for the preparation of hafnium oxide by atomic layer deposition.