In the preparation of catalyst for propylene polymerization, the Mg(OEt) 2 support was activated with ethanol/CO 2 system followed by solidification, and treated with TiCl 4 in the presence of ethylbenzoate as an inte...In the preparation of catalyst for propylene polymerization, the Mg(OEt) 2 support was activated with ethanol/CO 2 system followed by solidification, and treated with TiCl 4 in the presence of ethylbenzoate as an internal donor(ID). The chemical compositions of the activated support and the prepared catalyst were examined in detail. During the dissolution of Mg(OEt) 2 support in ethanol medium with CO 2 bubbling, the structure of support changed to magnesium hydrocarbyl carbonate, (CH 3CH 2O) 2- x Mg(O (C O) OCH 2CH 3) x ( x = 1,2). The content of carbonated CO 2 in the activated support was dependent on the heat treatment in the solidification of support. In the preparation procedure of polymerization catalyst, the activated support was treated with TiCl 4 so that the structure of support was converted to MgCl 2 with the incorporation of ID. The polymerization behavior of the pre-pared catalyst was also studied in the presence of phenyltriethoxysilane as an external donor.展开更多
The effect of a salicylic Schiff base componnd (Salcn) on the corrosion of AZ91 alloy in 30% ethylene glycol aqueous solution (30% EG/W) was investigated by electrochemical methods. Scanning electron microscope wa...The effect of a salicylic Schiff base componnd (Salcn) on the corrosion of AZ91 alloy in 30% ethylene glycol aqueous solution (30% EG/W) was investigated by electrochemical methods. Scanning electron microscope was used to observe the alloy surface in corrosive solution before and after the addition of inhibitor. There was no significant corrosion inhibition at the room temperature but high inhibition efficiencies were obtained at elevated temperatures due to the formation of chemisorbed inhibitor monolayer. As the inhibitor concentration increased, the inhibition efficiency increased probably due to more inhibitor adsorption on the alloy surface.展开更多
Ni–MgO nano‐composites were prepared on carbon anodes by electrodeposition from a nickel Watts bath in the presence of fine MgO reinforcement particles. Their performance as electrocata‐lysts for the oxidation of m...Ni–MgO nano‐composites were prepared on carbon anodes by electrodeposition from a nickel Watts bath in the presence of fine MgO reinforcement particles. Their performance as electrocata‐lysts for the oxidation of methanol and ethanol in alkaline medium was investigated and compared with that of carbon coated pure Ni (Ni/C). The chemical composition, phase structure, and surface morphology of the deposited nano‐composites were studied by energy dispersive X‐ray spectros‐copy, X‐ray diffractometry, and scanning electron microscopy, respectively. Different electrochemi‐cal techniques were used to estimate the catalytic activity of the prepared electrocatalyst anodes, including cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectros‐copy (EIS). The Ni/C electrocatalyst alone exhibited remarkably low catalytic activity and poor stability toward the electrooxidation process. The inclusion of MgO significantly promoted the cata‐lytic activity of the Ni catalyst for the alcohol electrooxidation and enhanced its poisoning re‐sistance. The EIS results confirmed those of CV and revealed a lower charge transfer resistance and enhanced roughness for the Ni–MgO/C nano‐composite electrodes compared with those of Ni/C.展开更多
文摘In the preparation of catalyst for propylene polymerization, the Mg(OEt) 2 support was activated with ethanol/CO 2 system followed by solidification, and treated with TiCl 4 in the presence of ethylbenzoate as an internal donor(ID). The chemical compositions of the activated support and the prepared catalyst were examined in detail. During the dissolution of Mg(OEt) 2 support in ethanol medium with CO 2 bubbling, the structure of support changed to magnesium hydrocarbyl carbonate, (CH 3CH 2O) 2- x Mg(O (C O) OCH 2CH 3) x ( x = 1,2). The content of carbonated CO 2 in the activated support was dependent on the heat treatment in the solidification of support. In the preparation procedure of polymerization catalyst, the activated support was treated with TiCl 4 so that the structure of support was converted to MgCl 2 with the incorporation of ID. The polymerization behavior of the pre-pared catalyst was also studied in the presence of phenyltriethoxysilane as an external donor.
基金the Research Council of the University of Mohaghegh Ardabili for its financial support of this study
文摘The effect of a salicylic Schiff base componnd (Salcn) on the corrosion of AZ91 alloy in 30% ethylene glycol aqueous solution (30% EG/W) was investigated by electrochemical methods. Scanning electron microscope was used to observe the alloy surface in corrosive solution before and after the addition of inhibitor. There was no significant corrosion inhibition at the room temperature but high inhibition efficiencies were obtained at elevated temperatures due to the formation of chemisorbed inhibitor monolayer. As the inhibitor concentration increased, the inhibition efficiency increased probably due to more inhibitor adsorption on the alloy surface.
文摘Ni–MgO nano‐composites were prepared on carbon anodes by electrodeposition from a nickel Watts bath in the presence of fine MgO reinforcement particles. Their performance as electrocata‐lysts for the oxidation of methanol and ethanol in alkaline medium was investigated and compared with that of carbon coated pure Ni (Ni/C). The chemical composition, phase structure, and surface morphology of the deposited nano‐composites were studied by energy dispersive X‐ray spectros‐copy, X‐ray diffractometry, and scanning electron microscopy, respectively. Different electrochemi‐cal techniques were used to estimate the catalytic activity of the prepared electrocatalyst anodes, including cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectros‐copy (EIS). The Ni/C electrocatalyst alone exhibited remarkably low catalytic activity and poor stability toward the electrooxidation process. The inclusion of MgO significantly promoted the cata‐lytic activity of the Ni catalyst for the alcohol electrooxidation and enhanced its poisoning re‐sistance. The EIS results confirmed those of CV and revealed a lower charge transfer resistance and enhanced roughness for the Ni–MgO/C nano‐composite electrodes compared with those of Ni/C.