Following the approach of our previous paper we continue to study the asymptotic solution of periodic Schrodinger operators. Using the eigenvalues obtained earlier the corresponding asymptotic wave functions are deriv...Following the approach of our previous paper we continue to study the asymptotic solution of periodic Schrodinger operators. Using the eigenvalues obtained earlier the corresponding asymptotic wave functions are derived. This gives further evidence in favor of the monodromy relations for the Floquet exponent proposed in the previous paper. In particular, the large energy asymptotic wave functions are related to the instanton partition function of N = 2 supersymmetric gauge theory with surface operator. A relevant number theoretic dessert is appended.展开更多
基金supported by the FAPESP No.2011/21812-8,through IFT-UNESP
文摘Following the approach of our previous paper we continue to study the asymptotic solution of periodic Schrodinger operators. Using the eigenvalues obtained earlier the corresponding asymptotic wave functions are derived. This gives further evidence in favor of the monodromy relations for the Floquet exponent proposed in the previous paper. In particular, the large energy asymptotic wave functions are related to the instanton partition function of N = 2 supersymmetric gauge theory with surface operator. A relevant number theoretic dessert is appended.