-
题名叠层模型驱动的书法文字识别方法研究
被引量:1
- 1
-
-
作者
麻斯亮
许勇
-
机构
华南理工大学计算机科学与工程学院
鹏城实验室
-
出处
《自动化学报》
EI
CAS
CSCD
北大核心
2024年第5期947-957,共11页
-
基金
国家自然科学基金(62072188)资助。
-
文摘
基于二维图像的书法文字识别是指利用计算机视觉技术对书法文字单字图像进行识别,在古籍研究和文化传播中具有重要应用.目前书法文字识别技术已经取得了相当不错的进展,但依旧面临很多挑战,比如复杂多变的字形可能导致的识别误差,汉字本身又存在较多形近字,且汉字字符类别数与其他语言文字相比更多,书法文字图像普遍存在类内差距大、类间差距小的问题.为解决这些问题,提出叠层模型驱动的书法文字识别方法(Stacked-model driven character recognition,SDCR),通过使用数据预处理、节点分离策略和叠层模型对现有单一分类模型进行改进,按照字体类别对同一类别不同字体风格的文字进行二次划分;针对类间差距小的问题,根据书法文字训练集图像识别置信度对形近字进行子集划分,针对子集进行嵌套模型增强训练,在测试阶段利用叠层模型对形近字进行二次识别,提升形近字的识别准确率.为了验证该方法的鲁棒性,在自主生成的SCUT_Calligraphy数据集和CASIA-HWDB 1.1,CASIA-AHCDB公开数据集上进行训练和测试,实验结果表明该方法在上述数据集的识别准确率均有较大幅度提升,在CASIA-HWDB 1.1、CASIA-AHCDB和自建数据集SCUT_Calligraphy上测试准确率分别达到96.33%、99.51%和99.90%,证明了该方法的有效性.
-
关键词
书法文字识别
模型驱动
节点分离
叠层模型
精度学习
-
Keywords
Calligraphy character recognition
model driven
nodes separation
stacked model
precision learning
-
分类号
TP391.41
[自动化与计算机技术—计算机应用技术]
-