MAPK families play an important role in complex cellular programs like proliferation, differentiation, development, transformation, and apoptosis. At least three MAPI(families have been characterized: extracellular si...MAPK families play an important role in complex cellular programs like proliferation, differentiation, development, transformation, and apoptosis. At least three MAPI(families have been characterized: extracellular signal-regulated kinase (ERK), Jun kinase (JNK/SAPK) and p38 MAPK. The above effects are fulfilled by regulation of cell cycle engine and other cell proliferation related proteins. In this paper we discussed their functions and cooperation with other signal pathways in regulation of cell proliferation.展开更多
Metallothioneins (MTs) were discovered in 1957 by Margoshes and Vallee and identified as low-molecular weight and sulphydryl rich proteins. It is not surprising that most mammalian tissues contain age related basal ...Metallothioneins (MTs) were discovered in 1957 by Margoshes and Vallee and identified as low-molecular weight and sulphydryl rich proteins. It is not surprising that most mammalian tissues contain age related basal levels of MTs since they are involved in metalloregulatory processes that include cell growth and multiplication. In an effort to understand the biology of this intriguing tumor, various biomarkers such as oncogenes, p53 tumor suppressor gene, war 1 protein, proliferating cell nuclear antigen, telomerase, microsatellite markers and cytogenetic changes have been examined. One biomarker which has recently shown to be expressed in various human tumors but still less reported in carcinoma is MT. Immunohistochemical detection of MT proteins in cold acetone-fixed paraffin embedded liver sections was performed by the streptavidin-avidin-biotin immunoperoxidase complex method.展开更多
Macroautophagy is a multistep, vacuolar, degradation pathway terminating in the lysosomal compartment, and it is of fundamental importance in tissue homeostasis. In this review, we consider macroautophagy in the light...Macroautophagy is a multistep, vacuolar, degradation pathway terminating in the lysosomal compartment, and it is of fundamental importance in tissue homeostasis. In this review, we consider macroautophagy in the light of recent advances in our understanding of the formation of autophagosomes, which are double-membrane-bound vacuoles that sequester cytoplasmic cargos and deliver them to lysosomes. In most cases, this final step is preceded by a maturation step during which autophagosomes interact with the endocytic pathway. The discovery of AuTophaGyrelated genes has greatly increased our knowledge about the mechanism responsible for antophagosome formation, and there has also been progress in the understanding of molecular aspects of autophagosome maturation. Finally, the regulation of autophagy is now better understood because of the discovery that the activity of Atg complexes is targeted by protein kinases, and owing to the importance of nuclear regulation via transcription factors in regulating the expression of autophagy genes.展开更多
Base excision repair (BER) is an evolutionarily conserved process for maintaining genomic integrity by eliminating several dozen damaged (oxidized or aikylated) or inappropriate bases that are generated endogenous...Base excision repair (BER) is an evolutionarily conserved process for maintaining genomic integrity by eliminating several dozen damaged (oxidized or aikylated) or inappropriate bases that are generated endogenously or induced by genotoxicants, predominantly, reactive oxygen species (ROS). BER involves 4-5 steps starting with base excision by a DNA glycosylase, followed by a common pathway usually involving an AP-endonuclease (APE) to generate 3' OH terminus at the damage site, followed by repair synthesis with a DNA polymerase and nick sealing by a DNA iigase. This pathway is also responsible for repairing DNA single-strand breaks with blocked termini directly generated by ROS. Nearly all glycosylases, far fewer than their substrate lesions particularly for oxidized bases, have broad and overlapping substrate range, and could serve as back-up enzymes in vivo. In contrast, mammalian cells encode only one APE, APEI, unlike two APEs in lower organisms. In spite of overall similarity, BER with distinct subpathways in the mammals is more complex than in E. coli. The glycosylases form complexes with downstream proteins to carry out efficient repair via distinct subpathways one of which, responsible for repair of strand breaks with 3' phosphate termini generated by the NEIL family glycosylases or by ROS, requires the phosphatase activity of polynucleotide kinase instead of APE1. Different complexes may utilize distinct DNA polymerases and iigases. Mammalian glycosylases have nonconserved extensions at one of the termini, dispensable for enzymatic activity but needed for interaction with other BER and non-BER proteins for complex formation and organeile targeting. The mammalian enzymes are sometimes covalently modified which may affect activity and complex formation. The focus of this review is on the early steps in mammalian BER for oxidized damage.展开更多
The encounter of elongating RNA polymerase Ⅱ (RNAPⅡo) with DNA lesions has severe consequences for the cell as this event provides a strong signal for P53-dependent apoptosis and cell cycle arrest. To counteract p...The encounter of elongating RNA polymerase Ⅱ (RNAPⅡo) with DNA lesions has severe consequences for the cell as this event provides a strong signal for P53-dependent apoptosis and cell cycle arrest. To counteract prolonged blockage of transcription, the cell removes the RNAPⅡo-blocking DNA lesions by transcription-coupled repair (TC-NER), a specialized subpathway of nucleotide excision repair (NER). Exposure of mice to UVB light or chemicals has elucidated that TC-NER is a critical survival pathway protecting against acute toxic and long-term effects (cancer) of genotoxic exposure. Deficiency in TC-NER is associated with mutations in the CSA and CSB genes giving rise to the rare human disorder Cockayne syndrome (CS). Recent data suggest that CSA and CSB play differential roles in mammalian TC-NER: CSB as a repair coupling factor to attract NER proteins, chromatin remodellers and the CSA- E3-ubiquitin ligase complex to the stalled RNAPⅡo. CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGN1 and TFⅡS. The emerging picture of TC-NER is complex: repair of transcription-blocking lesions occurs without displacement of the DNA damage-stalled RNAPⅡo, and requires at least two essential assembly factors (CSA and CSB), the core NER factors (except for XPC-RAD23B), and TC-NER specific factors. These and yet unidentified proteins will accomplish not only efficient repair of transcription-blocking lesions, but are also likely to contribute to DNA damage signalling events.展开更多
In any multi-cellular organism, the balance between cell division and cell death maintains a constant cell number. Both cell division cycle and cell death are highly regulated events. Whether the cell will proceed thr...In any multi-cellular organism, the balance between cell division and cell death maintains a constant cell number. Both cell division cycle and cell death are highly regulated events. Whether the cell will proceed through the cycle or not, depends upon whether the conditions required at the checkpoints during the cycle are fulfilled. In higher eucaryotic cells, such as mammalian cells, signals that arrest the cycle usually act at a G1 checkpoint. Cells that pass this restriction point are committed to complete the cycle. Regulation of the GI phase of the cell cycle is extremely complex and involves many different families of proteins such as retinoblastoma family cyclin dependent kinases, cyclins, and cyclic kinase inhibitors.展开更多
This review describes the principal pathways of macroautophagy (i.e. autophagy), microautophagy and chaperone-mediated autophagy as they are currently known to occur in mammalian cells. Because of its crucial role as ...This review describes the principal pathways of macroautophagy (i.e. autophagy), microautophagy and chaperone-mediated autophagy as they are currently known to occur in mammalian cells. Because of its crucial role as an accessory digestive organ, the liver has a particularly robust autophagic activity that is sensitive to changes in plasma and dietary components. Ethanol consumption causes major changes in hepatic protein and lipid metabolism and both are regulated by autophagy, which is significantly affected by hepatic ethanol metabolism. Ethanol exposure enhances autophagosome formation in liver cells, but suppresses lysosome function. Excessive ethanol consumption synergizes with hepatitis C virus (HCV) to exacerbate liver injury, as alcohol-consuming HCV patients frequently have a longer course of infection and more severe manifestations of chronic hepatitis than abstinent HCV patients. Alcohol-elicited exacerbation of HCV infection pathogenesis is related to modulation by ethanol metabolism of HCV replication. Additionally, as part of this mechanism, autophagic proteins have been shown to regulate viral (HCV) replication and their intracel-lular accumulation. Because ethanol induces autophagosome expression, enhanced levels of autophagic proteins may enhance HCV infectivity in liver cells of alcoholics and heavy drinkers.展开更多
AIM: To investigate diffusion in mammalian cell culture by gel entrapment within hollow fibers. METHODS: Freshly isolated rat hepatocytes or human oral epidermoid carcinoma (KB) cells were entrapped in type I collagen...AIM: To investigate diffusion in mammalian cell culture by gel entrapment within hollow fibers. METHODS: Freshly isolated rat hepatocytes or human oral epidermoid carcinoma (KB) cells were entrapped in type I collagen solutions and statically cultured inside microporous and ultrafiltration hollow fibers. During the culture time collagen gel contraction, cell viability and specific function were assessed. Effective diffusion coefficients of glucose in cell-matrix gels were determined by lag time analysis in a diffusion cell. RESULTS: Significant gel contractions occurred in the collagen gels by entrapment of either viable hepatocytes or KB cells. And the gel contraction caused a significant reduction on effective diffusion coefficient of glucose. The cell viability assay of both hepatocytes and KB cells statically cultured in hollow fibers by collagen entrapment further confirmed the existence of the inhibited mass transfer by diffusion. Urea was secreted about 50% more by hepatocytes entrapped in hollow fibers with pore size of 0.1 μm than that in hollow fibers with MWCO of 100 ku. CONCLUSION: Cell-matrix gel and membrane pore size are the two factors relevant to the limited mass transfer by diffusion in such gel entrapment of mammalian cell culture.展开更多
As a protein expression vector, the baculovirus demonstrates many advantages over other vectors. With the development of biotechnology, baculoviral vectors have been genetically modified to facilitate high level expre...As a protein expression vector, the baculovirus demonstrates many advantages over other vectors. With the development of biotechnology, baculoviral vectors have been genetically modified to facilitate high level expression of heterologous proteins in both insect and mammalian cells. These modifications include utilization of different promoters and signal peptides, deletion or replacement of viral genes for increasing protein secretion, integration of polycistronic expression cassette for producing protein complexes, and baculovirus pseudotyping, promoter accommodation or surface display for enhancing mammalian cell targeting gene delivery. This review summarizes the development and the current state of art of the baculovirus expression system. Further development of baculovirus expression systems will make them even more feasible and accessible for advanced applications.展开更多
The glycoprotein (GP) of Ebola is the sole structural protein that forms the spikes on the viral envelope. The GP contains two subunits, GPI and GP2, linked by a disulfide bond, which are responsible for receptor bi...The glycoprotein (GP) of Ebola is the sole structural protein that forms the spikes on the viral envelope. The GP contains two subunits, GPI and GP2, linked by a disulfide bond, which are responsible for receptor binding and membrane fusion, respectively. In this study, the full length of GP gene of Ebola Zaire species, 2028 base pairs in length, was synthesized using 38 overlapping oligonucleotides by multiple rounds of polymerase chain reaction (PCR). The synthesized GP gene was shown to be efficiently expressed in mammalian cells. Furthermore, an efficient HIV-based pseudotyping system was developed using the synthetic GP gene, providing a safe approach to dissecting the entry mechanism of Ebola viruses. Using this pseudotyping system and mutational analysis, the role of the charged residues in the GP2 helical regions was examined. It was found that substitutions of the most charged residues in the regions did not adversely affect GP expression, processing, or viral incorporation, however, most of the mutations greatly impaired the ability of GP to mediate efficient viral infection. These results demonstrate that these charged residues of GP2 play an important role in GP-mediated Ebola entry into its host cells. We propose that these charged residues are involved in forming the intermediate conformation(s) of GP in membrane fusion and Ebola entry.展开更多
Karenia is one of the most harmful and representative red tide genus in a temperate zone. Blooms caused by this genus have resulted in massive fish death in the South China Sea and the East China Sea. However, the pot...Karenia is one of the most harmful and representative red tide genus in a temperate zone. Blooms caused by this genus have resulted in massive fish death in the South China Sea and the East China Sea. However, the potential effects of this dinoflagellate on human health through the transfer of toxins via marine food webs, and the mechanisms of toxicity, are still unknown. Therefore, we examined the toxic effects of a strain of K. mikimotoi (isolated from the South China Sea) on the proliferation and morphology of four mammalian cell lines (two normal cell lines and two cancer cell lines). In addition, we carried out a preliminary investigation on the mechanism of toxicity of the alga. The results show that the polar lipid-soluble component ofK. mikimotoi significantly inhibited proliferation of the four cell lines, and resulted in the ceils becoming spherical, swollen and damaged. The result of Annexin V and PI double-staining confirmed that cell membranes were disrupted. The malonaldehyde (MDA) contents in the medium of the four cell lines treated with the polar-lipid extracts all increased significantly, which indicates that the polar-lipid toxins produced by K. rnikimotoi could adversely affect mammalian cells by inducing lipid peroxidation. We conclude that K. mikimotoi is a potential threat to human health, and the comprehensive effect of this dinoflagellate and its mechanisms should be investigated further.展开更多
The baculoviral inhibitors of apoptosis play a significant role in infectivity and viral host-range, which make them potential candidates for the engineering and improvement of baculovirus insecticidal. The iap3 gene ...The baculoviral inhibitors of apoptosis play a significant role in infectivity and viral host-range, which make them potential candidates for the engineering and improvement of baculovirus insecticidal. The iap3 gene of Spodoptera exigua nucleopolyhedrovirus (SeMNPV), amplified by PCR, was 939 bp encoding IAP3. The PCR product was cloned into EcoR I/Barn H I of the plasmid pEGFP-C1. GFP was fused to the N-terminaus of IAP3 to study distribution in HEK293. It was observed that the plasmid expressing IAP3 significantly inhibited apoptosis induced by cisplatin in HEK293 cells. We conclude that the IAP3 of SeMNPV is functional in mammalian cells.展开更多
Members of the basic helix-loop-helix (bHLH) gene family play important roles in vertebrate neurogenesis. In this study, confocal microscopy-based fluorescence resonance energy transfer (FRET) is used to monitor b...Members of the basic helix-loop-helix (bHLH) gene family play important roles in vertebrate neurogenesis. In this study, confocal microscopy-based fluorescence resonance energy transfer (FRET) is used to monitor bHLH protein-protein interactions under various physiological conditions. Tissue-specific bHLH activators, NeuroD 1, Mash 1, Neurogenin 1 (Ngn 1), Neurogenin2 (Ngn2), and ubiquitous expressed E47 protein are tagged with enhanced yellow fluorescence protein (EYFP) and enhanced cyan fluorescence protein (ECFP), respectively. The subcellular localization and mobility ofbHLH fusion proteins are examined in HEK293 cells. By transient transfection and in ovo electroporation, four pairs of tissue-specific bHLH activators and E47 protein are over-expressed in HEK293 cells and developing chick embryo neural tube. With the acceptor photobleaching method, FRET could be detected between these bHLH protein pairs in the nuclei of transfected cells and developing neural tubes. Mashl/E47 and Ngn2/E47 FRET pairs show higher FRET efficiencies in the medial and the lateral half of chick embryo neural tube, respectively. It suggests that these bHLH protein pairs formed functional DNA-protein complexes with regulatory elements of their downstream target genes in the specific regions. This work will help one understand the behaviours of bHLH factors in vivo.展开更多
AIM: To construct and produce a recombinant bispecific humanized single-chain Fv (sFv) /Interleukin-2 (IL-2) fusion protein by using mammalian cells. METHODS: The sFv/IL-2 protein was genetically engineered, and...AIM: To construct and produce a recombinant bispecific humanized single-chain Fv (sFv) /Interleukin-2 (IL-2) fusion protein by using mammalian cells. METHODS: The sFv/IL-2 protein was genetically engineered, and transfected to mammalian cells to determine whether the mammalian protein folding machinery can produce and secrete active sFv/IL-2 with high efficiency. RESULTS: The fusion protein was constructed and high efficiently expressed with yields up to 102 ±4.2 mg/L in culture supernatant of the stably transfected 293 cell line. This recombinant fusion protein consisted of humanized variable heavy (VH) and light (VL) domains of monoclonal antibody (mAb) 520C9 directed against the human HER-2/neu (c-erbB2) proto-oncogene product p185, and human IL-2 connected by polypeptide linker. The fusion protein was shown to retain the immunostimulatory activities of IL-2 as measured by IL- 2-dependent cell proliferation and cytotoxicity assays. In addition to its IL-2 activities, this fusion protein also possessed antigen-binding specificity against p185, as determined by indirect ELISA using p185 positive SKOV 3ip1 cells. CONCLUSION: The large-scale preparation of the recombinant humanized sFv antibody/IL-2 fusion protein is performed with 293 cells. The recombinant humanized sFv antibody/IL-2 fusion protein may provide an effective means.of targeting therapeutic doses of IL-2 to p185 positive tumors without increasing systemic toxicity or immunogenicity.展开更多
A wide variety of neurons and gIial cells differentiatefrom common precursor cells in the developing nervoussystem. During this process, Notch-mediated cell-cell in-teraction is essential for maintenance of dividing c...A wide variety of neurons and gIial cells differentiatefrom common precursor cells in the developing nervoussystem. During this process, Notch-mediated cell-cell in-teraction is essential for maintenance of dividing cells andsubsequellt generation of cell type diversity. Activation ofNotch inhibits cellular differentiation, and abnormality ofthe Notch pathway leads to premature neuronal differenti-ation, the lack of some cell types, and severe defects of tis-sue morphogenesis. Recent data demonstrate that Notchfails to inhibit cellular differentiation in the absence of thebHLH genes Hes1 and He5, which functionally afitago-nize the neuronal bHLH genes such as theh1- These re-sults indicate that the two Hes genes are essential effecorsfor the Notch pathway and that neuronal differentiation iscontrolled by the pathway "Notch-+He1/Hs5,Mish1".展开更多
Through proliferation and differentiation, a single cell, the zygote, can give rise to a complex organism composed of many types of cells. Up to the eight-cell embryo stage, the blastomeres are morphologically identic...Through proliferation and differentiation, a single cell, the zygote, can give rise to a complex organism composed of many types of cells. Up to the eight-cell embryo stage, the blastomeres are morphologically identical and distributed symmetrically in the mammalian embryo. Functionally, in some species, they are all totipotent. However, due to the compaction of blastomeres and the asymmetrical cell division at the late phase of the eight-cell embryo, the blastomeres of the morula are no longer identical. During the transition from morula to blastocyst, blastomeres differentiate, resulting in the first cell fate decision in embryogenesis, namely, the segregation of the inner cell mass and the tropheetoderm. In this review, we will discuss the regulatory mechanisms essential for the cell fate choice during blastocyst development, including transcriptional regulation, epigenetic regulation, mieroRNAs, and signal transduction.展开更多
By means of indirect double immunofluorescent staining, the coordination of PI antigen and perichromonucleolin (PCN), the constituent of nuclear periphery and nucleolus respectively, in the assembly and disassembly of...By means of indirect double immunofluorescent staining, the coordination of PI antigen and perichromonucleolin (PCN), the constituent of nuclear periphery and nucleolus respectively, in the assembly and disassembly of chromosome pellicle during mitosis was studied. It was found that in 3T3 cells, during mitosis PI antigen began to coat the condensing chromosome .surface earlier.than PCN did. However, both of them completed their coating on chromosome at approximately the same stage of mitosis, prometaphase metaphase. The dissociation of PI antigen from chromosome pellicle to participate the formation of nuclear periphery took, place also ahead of that of PCN. At early telophase PI antigen had been extensively involved in the formation of nuclear periphery, while PCN remained in association with the surface of decondensing chromosomes. At late telophase, when PI antigen was localized in an fairly well formed nuclear periphery, PCN was in a stage of forming prenucleolar bodies.展开更多
Nuclear proteins often form punctiform structures, but the precise mechanism for this process is unknown. As a preliminary study, we investigated the aggregation of an HSV-1 immediate-early protein, infected-cell prot...Nuclear proteins often form punctiform structures, but the precise mechanism for this process is unknown. As a preliminary study, we investigated the aggregation of an HSV-1 immediate-early protein, infected-cell protein 22 (ICP22), in the nucleus by observing the localization of ICP22-EGFP fusion protein Results showed that, in high-level expression conditions, ICP22-EGFP gradually concentrates in the nucleus, persists throughout the cell cycle without disaggregation even in the cell division phase, and is finally distributed to daughter cells. We subsequently constructed a mammalian cell expression system, which had tetracycline- dependent transcriptional regulators. Consequently, the location of ICP22-EGFP in the nucleus changed with distinct induction conditions. This suggests that the cellular location of ICP22 is also influenced by promoter regulation, in addition to its own structure. Our findings provide new clues for the investigation of transcriptional regulation of viral genes. In addition, the non-protease reporter system we constructed could be utilized to evaluate the role of intemal ribosome entry sites (IRES) on transcriptional regulation.展开更多
基金supported by the Major StateBasic Research Project (Grant No. G1999053901).
文摘MAPK families play an important role in complex cellular programs like proliferation, differentiation, development, transformation, and apoptosis. At least three MAPI(families have been characterized: extracellular signal-regulated kinase (ERK), Jun kinase (JNK/SAPK) and p38 MAPK. The above effects are fulfilled by regulation of cell cycle engine and other cell proliferation related proteins. In this paper we discussed their functions and cooperation with other signal pathways in regulation of cell proliferation.
文摘Metallothioneins (MTs) were discovered in 1957 by Margoshes and Vallee and identified as low-molecular weight and sulphydryl rich proteins. It is not surprising that most mammalian tissues contain age related basal levels of MTs since they are involved in metalloregulatory processes that include cell growth and multiplication. In an effort to understand the biology of this intriguing tumor, various biomarkers such as oncogenes, p53 tumor suppressor gene, war 1 protein, proliferating cell nuclear antigen, telomerase, microsatellite markers and cytogenetic changes have been examined. One biomarker which has recently shown to be expressed in various human tumors but still less reported in carcinoma is MT. Immunohistochemical detection of MT proteins in cold acetone-fixed paraffin embedded liver sections was performed by the streptavidin-avidin-biotin immunoperoxidase complex method.
文摘Macroautophagy is a multistep, vacuolar, degradation pathway terminating in the lysosomal compartment, and it is of fundamental importance in tissue homeostasis. In this review, we consider macroautophagy in the light of recent advances in our understanding of the formation of autophagosomes, which are double-membrane-bound vacuoles that sequester cytoplasmic cargos and deliver them to lysosomes. In most cases, this final step is preceded by a maturation step during which autophagosomes interact with the endocytic pathway. The discovery of AuTophaGyrelated genes has greatly increased our knowledge about the mechanism responsible for antophagosome formation, and there has also been progress in the understanding of molecular aspects of autophagosome maturation. Finally, the regulation of autophagy is now better understood because of the discovery that the activity of Atg complexes is targeted by protein kinases, and owing to the importance of nuclear regulation via transcription factors in regulating the expression of autophagy genes.
文摘Base excision repair (BER) is an evolutionarily conserved process for maintaining genomic integrity by eliminating several dozen damaged (oxidized or aikylated) or inappropriate bases that are generated endogenously or induced by genotoxicants, predominantly, reactive oxygen species (ROS). BER involves 4-5 steps starting with base excision by a DNA glycosylase, followed by a common pathway usually involving an AP-endonuclease (APE) to generate 3' OH terminus at the damage site, followed by repair synthesis with a DNA polymerase and nick sealing by a DNA iigase. This pathway is also responsible for repairing DNA single-strand breaks with blocked termini directly generated by ROS. Nearly all glycosylases, far fewer than their substrate lesions particularly for oxidized bases, have broad and overlapping substrate range, and could serve as back-up enzymes in vivo. In contrast, mammalian cells encode only one APE, APEI, unlike two APEs in lower organisms. In spite of overall similarity, BER with distinct subpathways in the mammals is more complex than in E. coli. The glycosylases form complexes with downstream proteins to carry out efficient repair via distinct subpathways one of which, responsible for repair of strand breaks with 3' phosphate termini generated by the NEIL family glycosylases or by ROS, requires the phosphatase activity of polynucleotide kinase instead of APE1. Different complexes may utilize distinct DNA polymerases and iigases. Mammalian glycosylases have nonconserved extensions at one of the termini, dispensable for enzymatic activity but needed for interaction with other BER and non-BER proteins for complex formation and organeile targeting. The mammalian enzymes are sometimes covalently modified which may affect activity and complex formation. The focus of this review is on the early steps in mammalian BER for oxidized damage.
文摘The encounter of elongating RNA polymerase Ⅱ (RNAPⅡo) with DNA lesions has severe consequences for the cell as this event provides a strong signal for P53-dependent apoptosis and cell cycle arrest. To counteract prolonged blockage of transcription, the cell removes the RNAPⅡo-blocking DNA lesions by transcription-coupled repair (TC-NER), a specialized subpathway of nucleotide excision repair (NER). Exposure of mice to UVB light or chemicals has elucidated that TC-NER is a critical survival pathway protecting against acute toxic and long-term effects (cancer) of genotoxic exposure. Deficiency in TC-NER is associated with mutations in the CSA and CSB genes giving rise to the rare human disorder Cockayne syndrome (CS). Recent data suggest that CSA and CSB play differential roles in mammalian TC-NER: CSB as a repair coupling factor to attract NER proteins, chromatin remodellers and the CSA- E3-ubiquitin ligase complex to the stalled RNAPⅡo. CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGN1 and TFⅡS. The emerging picture of TC-NER is complex: repair of transcription-blocking lesions occurs without displacement of the DNA damage-stalled RNAPⅡo, and requires at least two essential assembly factors (CSA and CSB), the core NER factors (except for XPC-RAD23B), and TC-NER specific factors. These and yet unidentified proteins will accomplish not only efficient repair of transcription-blocking lesions, but are also likely to contribute to DNA damage signalling events.
文摘In any multi-cellular organism, the balance between cell division and cell death maintains a constant cell number. Both cell division cycle and cell death are highly regulated events. Whether the cell will proceed through the cycle or not, depends upon whether the conditions required at the checkpoints during the cycle are fulfilled. In higher eucaryotic cells, such as mammalian cells, signals that arrest the cycle usually act at a G1 checkpoint. Cells that pass this restriction point are committed to complete the cycle. Regulation of the GI phase of the cell cycle is extremely complex and involves many different families of proteins such as retinoblastoma family cyclin dependent kinases, cyclins, and cyclic kinase inhibitors.
基金Supported by NIAAA, R21AA017232 andDean’s Reviewed Research Grant of the University of Nebraska Medical Center
文摘This review describes the principal pathways of macroautophagy (i.e. autophagy), microautophagy and chaperone-mediated autophagy as they are currently known to occur in mammalian cells. Because of its crucial role as an accessory digestive organ, the liver has a particularly robust autophagic activity that is sensitive to changes in plasma and dietary components. Ethanol consumption causes major changes in hepatic protein and lipid metabolism and both are regulated by autophagy, which is significantly affected by hepatic ethanol metabolism. Ethanol exposure enhances autophagosome formation in liver cells, but suppresses lysosome function. Excessive ethanol consumption synergizes with hepatitis C virus (HCV) to exacerbate liver injury, as alcohol-consuming HCV patients frequently have a longer course of infection and more severe manifestations of chronic hepatitis than abstinent HCV patients. Alcohol-elicited exacerbation of HCV infection pathogenesis is related to modulation by ethanol metabolism of HCV replication. Additionally, as part of this mechanism, autophagic proteins have been shown to regulate viral (HCV) replication and their intracel-lular accumulation. Because ethanol induces autophagosome expression, enhanced levels of autophagic proteins may enhance HCV infectivity in liver cells of alcoholics and heavy drinkers.
基金Supported by the National Natural Science Foundation of China,No.90209053Zhejiang Scientific Project, No. 2003C31042
文摘AIM: To investigate diffusion in mammalian cell culture by gel entrapment within hollow fibers. METHODS: Freshly isolated rat hepatocytes or human oral epidermoid carcinoma (KB) cells were entrapped in type I collagen solutions and statically cultured inside microporous and ultrafiltration hollow fibers. During the culture time collagen gel contraction, cell viability and specific function were assessed. Effective diffusion coefficients of glucose in cell-matrix gels were determined by lag time analysis in a diffusion cell. RESULTS: Significant gel contractions occurred in the collagen gels by entrapment of either viable hepatocytes or KB cells. And the gel contraction caused a significant reduction on effective diffusion coefficient of glucose. The cell viability assay of both hepatocytes and KB cells statically cultured in hollow fibers by collagen entrapment further confirmed the existence of the inhibited mass transfer by diffusion. Urea was secreted about 50% more by hepatocytes entrapped in hollow fibers with pore size of 0.1 μm than that in hollow fibers with MWCO of 100 ku. CONCLUSION: Cell-matrix gel and membrane pore size are the two factors relevant to the limited mass transfer by diffusion in such gel entrapment of mammalian cell culture.
基金The Knowledge Innovation Program of the Chinese Academy of Sciences,(No.KSCX2-EW-G-8)the National Basic Research Program of China program(No.2009CB118903)
文摘As a protein expression vector, the baculovirus demonstrates many advantages over other vectors. With the development of biotechnology, baculoviral vectors have been genetically modified to facilitate high level expression of heterologous proteins in both insect and mammalian cells. These modifications include utilization of different promoters and signal peptides, deletion or replacement of viral genes for increasing protein secretion, integration of polycistronic expression cassette for producing protein complexes, and baculovirus pseudotyping, promoter accommodation or surface display for enhancing mammalian cell targeting gene delivery. This review summarizes the development and the current state of art of the baculovirus expression system. Further development of baculovirus expression systems will make them even more feasible and accessible for advanced applications.
基金supported by National Institutes of Health grants CA 092459 and AI48056. L. R. was a recipient of the Schweppe Foundation Career Development Award.
文摘The glycoprotein (GP) of Ebola is the sole structural protein that forms the spikes on the viral envelope. The GP contains two subunits, GPI and GP2, linked by a disulfide bond, which are responsible for receptor binding and membrane fusion, respectively. In this study, the full length of GP gene of Ebola Zaire species, 2028 base pairs in length, was synthesized using 38 overlapping oligonucleotides by multiple rounds of polymerase chain reaction (PCR). The synthesized GP gene was shown to be efficiently expressed in mammalian cells. Furthermore, an efficient HIV-based pseudotyping system was developed using the synthetic GP gene, providing a safe approach to dissecting the entry mechanism of Ebola viruses. Using this pseudotyping system and mutational analysis, the role of the charged residues in the GP2 helical regions was examined. It was found that substitutions of the most charged residues in the regions did not adversely affect GP expression, processing, or viral incorporation, however, most of the mutations greatly impaired the ability of GP to mediate efficient viral infection. These results demonstrate that these charged residues of GP2 play an important role in GP-mediated Ebola entry into its host cells. We propose that these charged residues are involved in forming the intermediate conformation(s) of GP in membrane fusion and Ebola entry.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2010CB428700)the National Natural Science Foundation of China (Nos. U0733006, 40821004)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-Q07-02)
文摘Karenia is one of the most harmful and representative red tide genus in a temperate zone. Blooms caused by this genus have resulted in massive fish death in the South China Sea and the East China Sea. However, the potential effects of this dinoflagellate on human health through the transfer of toxins via marine food webs, and the mechanisms of toxicity, are still unknown. Therefore, we examined the toxic effects of a strain of K. mikimotoi (isolated from the South China Sea) on the proliferation and morphology of four mammalian cell lines (two normal cell lines and two cancer cell lines). In addition, we carried out a preliminary investigation on the mechanism of toxicity of the alga. The results show that the polar lipid-soluble component ofK. mikimotoi significantly inhibited proliferation of the four cell lines, and resulted in the ceils becoming spherical, swollen and damaged. The result of Annexin V and PI double-staining confirmed that cell membranes were disrupted. The malonaldehyde (MDA) contents in the medium of the four cell lines treated with the polar-lipid extracts all increased significantly, which indicates that the polar-lipid toxins produced by K. rnikimotoi could adversely affect mammalian cells by inducing lipid peroxidation. We conclude that K. mikimotoi is a potential threat to human health, and the comprehensive effect of this dinoflagellate and its mechanisms should be investigated further.
文摘The baculoviral inhibitors of apoptosis play a significant role in infectivity and viral host-range, which make them potential candidates for the engineering and improvement of baculovirus insecticidal. The iap3 gene of Spodoptera exigua nucleopolyhedrovirus (SeMNPV), amplified by PCR, was 939 bp encoding IAP3. The PCR product was cloned into EcoR I/Barn H I of the plasmid pEGFP-C1. GFP was fused to the N-terminaus of IAP3 to study distribution in HEK293. It was observed that the plasmid expressing IAP3 significantly inhibited apoptosis induced by cisplatin in HEK293 cells. We conclude that the IAP3 of SeMNPV is functional in mammalian cells.
基金National Natural Science Foundation of China (#90208011, #30300174, #30070856 , #30421005) National Key Basic Research and Development Program of China (#2002CB713802 , #2005CB522700) Shanghai Key Project of Basic Science Research (#04DZ14005 , #04DZ05608).
文摘Members of the basic helix-loop-helix (bHLH) gene family play important roles in vertebrate neurogenesis. In this study, confocal microscopy-based fluorescence resonance energy transfer (FRET) is used to monitor bHLH protein-protein interactions under various physiological conditions. Tissue-specific bHLH activators, NeuroD 1, Mash 1, Neurogenin 1 (Ngn 1), Neurogenin2 (Ngn2), and ubiquitous expressed E47 protein are tagged with enhanced yellow fluorescence protein (EYFP) and enhanced cyan fluorescence protein (ECFP), respectively. The subcellular localization and mobility ofbHLH fusion proteins are examined in HEK293 cells. By transient transfection and in ovo electroporation, four pairs of tissue-specific bHLH activators and E47 protein are over-expressed in HEK293 cells and developing chick embryo neural tube. With the acceptor photobleaching method, FRET could be detected between these bHLH protein pairs in the nuclei of transfected cells and developing neural tubes. Mashl/E47 and Ngn2/E47 FRET pairs show higher FRET efficiencies in the medial and the lateral half of chick embryo neural tube, respectively. It suggests that these bHLH protein pairs formed functional DNA-protein complexes with regulatory elements of their downstream target genes in the specific regions. This work will help one understand the behaviours of bHLH factors in vivo.
文摘AIM: To construct and produce a recombinant bispecific humanized single-chain Fv (sFv) /Interleukin-2 (IL-2) fusion protein by using mammalian cells. METHODS: The sFv/IL-2 protein was genetically engineered, and transfected to mammalian cells to determine whether the mammalian protein folding machinery can produce and secrete active sFv/IL-2 with high efficiency. RESULTS: The fusion protein was constructed and high efficiently expressed with yields up to 102 ±4.2 mg/L in culture supernatant of the stably transfected 293 cell line. This recombinant fusion protein consisted of humanized variable heavy (VH) and light (VL) domains of monoclonal antibody (mAb) 520C9 directed against the human HER-2/neu (c-erbB2) proto-oncogene product p185, and human IL-2 connected by polypeptide linker. The fusion protein was shown to retain the immunostimulatory activities of IL-2 as measured by IL- 2-dependent cell proliferation and cytotoxicity assays. In addition to its IL-2 activities, this fusion protein also possessed antigen-binding specificity against p185, as determined by indirect ELISA using p185 positive SKOV 3ip1 cells. CONCLUSION: The large-scale preparation of the recombinant humanized sFv antibody/IL-2 fusion protein is performed with 293 cells. The recombinant humanized sFv antibody/IL-2 fusion protein may provide an effective means.of targeting therapeutic doses of IL-2 to p185 positive tumors without increasing systemic toxicity or immunogenicity.
文摘A wide variety of neurons and gIial cells differentiatefrom common precursor cells in the developing nervoussystem. During this process, Notch-mediated cell-cell in-teraction is essential for maintenance of dividing cells andsubsequellt generation of cell type diversity. Activation ofNotch inhibits cellular differentiation, and abnormality ofthe Notch pathway leads to premature neuronal differenti-ation, the lack of some cell types, and severe defects of tis-sue morphogenesis. Recent data demonstrate that Notchfails to inhibit cellular differentiation in the absence of thebHLH genes Hes1 and He5, which functionally afitago-nize the neuronal bHLH genes such as theh1- These re-sults indicate that the two Hes genes are essential effecorsfor the Notch pathway and that neuronal differentiation iscontrolled by the pathway "Notch-+He1/Hs5,Mish1".
文摘Through proliferation and differentiation, a single cell, the zygote, can give rise to a complex organism composed of many types of cells. Up to the eight-cell embryo stage, the blastomeres are morphologically identical and distributed symmetrically in the mammalian embryo. Functionally, in some species, they are all totipotent. However, due to the compaction of blastomeres and the asymmetrical cell division at the late phase of the eight-cell embryo, the blastomeres of the morula are no longer identical. During the transition from morula to blastocyst, blastomeres differentiate, resulting in the first cell fate decision in embryogenesis, namely, the segregation of the inner cell mass and the tropheetoderm. In this review, we will discuss the regulatory mechanisms essential for the cell fate choice during blastocyst development, including transcriptional regulation, epigenetic regulation, mieroRNAs, and signal transduction.
文摘By means of indirect double immunofluorescent staining, the coordination of PI antigen and perichromonucleolin (PCN), the constituent of nuclear periphery and nucleolus respectively, in the assembly and disassembly of chromosome pellicle during mitosis was studied. It was found that in 3T3 cells, during mitosis PI antigen began to coat the condensing chromosome .surface earlier.than PCN did. However, both of them completed their coating on chromosome at approximately the same stage of mitosis, prometaphase metaphase. The dissociation of PI antigen from chromosome pellicle to participate the formation of nuclear periphery took, place also ahead of that of PCN. At early telophase PI antigen had been extensively involved in the formation of nuclear periphery, while PCN remained in association with the surface of decondensing chromosomes. At late telophase, when PI antigen was localized in an fairly well formed nuclear periphery, PCN was in a stage of forming prenucleolar bodies.
基金The National Natural Science Foundation of China (30670094, 30700028)the Ph.D. Programs Foundation of Ministry of Education of China (2006-0023008)
文摘Nuclear proteins often form punctiform structures, but the precise mechanism for this process is unknown. As a preliminary study, we investigated the aggregation of an HSV-1 immediate-early protein, infected-cell protein 22 (ICP22), in the nucleus by observing the localization of ICP22-EGFP fusion protein Results showed that, in high-level expression conditions, ICP22-EGFP gradually concentrates in the nucleus, persists throughout the cell cycle without disaggregation even in the cell division phase, and is finally distributed to daughter cells. We subsequently constructed a mammalian cell expression system, which had tetracycline- dependent transcriptional regulators. Consequently, the location of ICP22-EGFP in the nucleus changed with distinct induction conditions. This suggests that the cellular location of ICP22 is also influenced by promoter regulation, in addition to its own structure. Our findings provide new clues for the investigation of transcriptional regulation of viral genes. In addition, the non-protease reporter system we constructed could be utilized to evaluate the role of intemal ribosome entry sites (IRES) on transcriptional regulation.