In this paper,nano-Cu particles with an average size of smaller than 20 nm were dispersed under ultrasonic agitation in emulsions for cold rolling of steel strips.The tribological properties of the cold rolling emulsi...In this paper,nano-Cu particles with an average size of smaller than 20 nm were dispersed under ultrasonic agitation in emulsions for cold rolling of steel strips.The tribological properties of the cold rolling emulsion doped with nano-Cu particles were evaluated by using a four-ball machine,and the worn surfaces of the steel balls were checked by an optical microscope.A JC2000C1 wetting angle tester was also applied to study the variation in the emulsion's wetting performance when nano-Cu particles were incorporated.Furthermore,the lubricity of the emulsion doped with nano-Cu for steel strip cold rolling was evaluated on a four-high rolling mill for comparison with the emulsion without using nano-Cu particles.Test results indicated that nano-Cu particles as the additive used in cold rolling emulsion were able to improve the wetting property,friction-reducing,anti-wear,and extreme pressure performance of the base stock significantly.At the same time,nano-Cu particles also showed good lubricity to the cold-rolled steel strips.Namely,the cold-rolled steel strips under the lubrication of the cold rolling emulsion containing nano-Cu particles had considerably decreased the after-rolling thickness and achieved excellent surface quality as well.Finally,the lubrication mechanism of nano-Cu particles in the emulsion for cold rolling of steel strips was discussed.展开更多
The influence of the ratio and content of emulsifiers on the stability of anion emulsions for cold strip rolling was investigated in this paper. The present study also investigated the effects of HLB (hydrophile-lipo...The influence of the ratio and content of emulsifiers on the stability of anion emulsions for cold strip rolling was investigated in this paper. The present study also investigated the effects of HLB (hydrophile-lipophile balance) value and emulsifier content on the stability of no-ionic emulsions. Based on the effects of different stabilities and different concentrations of emulsions on the adsorptivity and friction coefficients, good lubricating performance was obtained when the amount of the separated oil and soap (SOS) accounted for 2.5%. The wearing scar of the steel balls also indicated the improvements in tribological properties after using the emulsion. Thus, the preparation of emulsion should be regulated according to different rolling conditions.展开更多
Oil-in-water (O/W) emulsions are widely used in metal working such as hot rolling and cutting. Three kinds of O/W emulsions with low oil concentration were prepared which include conventional emulsion (CE), miniem...Oil-in-water (O/W) emulsions are widely used in metal working such as hot rolling and cutting. Three kinds of O/W emulsions with low oil concentration were prepared which include conventional emulsion (CE), miniemulsion (MNE) and microemulsion (ME). The lubricating properties of O/W emulsions with low oil concentration were investigated using the tribological testers and the thin film interferometry based on the relative optical interference intensity method. The tribological test results under boundary lubrication show that the friction coefficient and the total losing weight can be clearly seen: CE 〈 MNE 〈 ME. The lubricating film thicknesses under elastohydrodynarnic lubrication and thin film lubrication show that a relationship of the film formation abilities: CE 〉 MNE 〉 ME. Competitive wetting behavior of water and oil on solid surface was confirmed to play an important role in the film formation and tribological behaviors of O/W emulsion.展开更多
基金supported by the National High-Tech Research and Development Program("863"Program) of China (No.2009AA03Z339)Important and Large Sci-Tech of Guangzhou Mechanical Engineering Research Institute Co.,Ltd. (No. 12300022)
文摘In this paper,nano-Cu particles with an average size of smaller than 20 nm were dispersed under ultrasonic agitation in emulsions for cold rolling of steel strips.The tribological properties of the cold rolling emulsion doped with nano-Cu particles were evaluated by using a four-ball machine,and the worn surfaces of the steel balls were checked by an optical microscope.A JC2000C1 wetting angle tester was also applied to study the variation in the emulsion's wetting performance when nano-Cu particles were incorporated.Furthermore,the lubricity of the emulsion doped with nano-Cu for steel strip cold rolling was evaluated on a four-high rolling mill for comparison with the emulsion without using nano-Cu particles.Test results indicated that nano-Cu particles as the additive used in cold rolling emulsion were able to improve the wetting property,friction-reducing,anti-wear,and extreme pressure performance of the base stock significantly.At the same time,nano-Cu particles also showed good lubricity to the cold-rolled steel strips.Namely,the cold-rolled steel strips under the lubrication of the cold rolling emulsion containing nano-Cu particles had considerably decreased the after-rolling thickness and achieved excellent surface quality as well.Finally,the lubrication mechanism of nano-Cu particles in the emulsion for cold rolling of steel strips was discussed.
基金supported by the National High-Tech Research and Development Program ("863"Program) of China(No.2009AA03Z 339)
文摘The influence of the ratio and content of emulsifiers on the stability of anion emulsions for cold strip rolling was investigated in this paper. The present study also investigated the effects of HLB (hydrophile-lipophile balance) value and emulsifier content on the stability of no-ionic emulsions. Based on the effects of different stabilities and different concentrations of emulsions on the adsorptivity and friction coefficients, good lubricating performance was obtained when the amount of the separated oil and soap (SOS) accounted for 2.5%. The wearing scar of the steel balls also indicated the improvements in tribological properties after using the emulsion. Thus, the preparation of emulsion should be regulated according to different rolling conditions.
基金supported by the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20100007120010)the Tribology Science Fund of State Key Laboratory of Tribology (Grant No. SKLTKF11A05)Science Foundation of China University of Petroleum,Beijing (GrantNo. KYJJ2012-04-17)
文摘Oil-in-water (O/W) emulsions are widely used in metal working such as hot rolling and cutting. Three kinds of O/W emulsions with low oil concentration were prepared which include conventional emulsion (CE), miniemulsion (MNE) and microemulsion (ME). The lubricating properties of O/W emulsions with low oil concentration were investigated using the tribological testers and the thin film interferometry based on the relative optical interference intensity method. The tribological test results under boundary lubrication show that the friction coefficient and the total losing weight can be clearly seen: CE 〈 MNE 〈 ME. The lubricating film thicknesses under elastohydrodynarnic lubrication and thin film lubrication show that a relationship of the film formation abilities: CE 〉 MNE 〉 ME. Competitive wetting behavior of water and oil on solid surface was confirmed to play an important role in the film formation and tribological behaviors of O/W emulsion.