A new reaction system was designed to economically convert glucose to lactic acid environment-friendly. Hydrophobic ionic liquids were chosen as solvent that can promote the decomposition reaction of glucose, and the ...A new reaction system was designed to economically convert glucose to lactic acid environment-friendly. Hydrophobic ionic liquids were chosen as solvent that can promote the decomposition reaction of glucose, and the catalytic performance of the solid bases was evaluated. Both the reaction temperature and time can affect the yield of lactic acid. A high yield (97%) of lactic acid was achieved under the optimal reaction condition. The IH NMR spectra and HPLC-MS were used to identify the formation of the lactic acid and variations of ionic liquid. It is found that ionic-liquids have a unique solvent effect for glucose and bases. Water can be used as solvent to extract calcium lactate. This shows a great potential of hydrophobic ionic liquids in the solid bases catalyzed reaction that is limited by the weak solubility of solid bases in organic and water solution.展开更多
The fluorescent carbon dots were successfully synthesized by simply heating the mixture of lactose and Na OH solution. The as-synthesized carbon dots had been systematically characterized by fluorescence, Fourier tran...The fluorescent carbon dots were successfully synthesized by simply heating the mixture of lactose and Na OH solution. The as-synthesized carbon dots had been systematically characterized by fluorescence, Fourier transform infrared(FTIR), high resolution transmission electron microscopy(HR-TEM) and ^(13)C NMR. Since the fluorescence of the carbon dots was efficiently quenched by folic acid, the carbon dots were employed as selective fluorescence probes for detecting folic acid, depending on the formation of hydrogen bond among the functional group of folic acid(–OH, –COOH and –NH_2) and –OH and –COOH of the carbon dots. Moreover, the decrease of fluorescence intensity was capable of detecting folic acid in a linear range of 6×10^(-5)–8×10^(-8) mol/L with a detection limit of 1.2×10^(-9)mol/L at a signal-to-noise ratio of 3, suggesting a promising assay for folic acid. Significantly, the practicability of this fluorescence probe to assay folic acid in human urine samples was further evaluated.展开更多
基金Project(2006BAE02B05) supported by the Key Projects in the National Science and Technology Pillar Program During the 11th Five-year Plan PeriodProject(2005CB221406) supported by the National Basic Research Program of China
文摘A new reaction system was designed to economically convert glucose to lactic acid environment-friendly. Hydrophobic ionic liquids were chosen as solvent that can promote the decomposition reaction of glucose, and the catalytic performance of the solid bases was evaluated. Both the reaction temperature and time can affect the yield of lactic acid. A high yield (97%) of lactic acid was achieved under the optimal reaction condition. The IH NMR spectra and HPLC-MS were used to identify the formation of the lactic acid and variations of ionic liquid. It is found that ionic-liquids have a unique solvent effect for glucose and bases. Water can be used as solvent to extract calcium lactate. This shows a great potential of hydrophobic ionic liquids in the solid bases catalyzed reaction that is limited by the weak solubility of solid bases in organic and water solution.
基金supported by the Science Foundation of Southwest University (SWU114053)the Natural Science Foundation Project of CQ CSTC (cstc2013jcyj A10117)+1 种基金the Fundamental Research Funds for the Central Universities (XDJK2015A005, XDJK2016D033)the Innovative Research Project for Postgraduate Students of Chongqing (CYS14049)
文摘The fluorescent carbon dots were successfully synthesized by simply heating the mixture of lactose and Na OH solution. The as-synthesized carbon dots had been systematically characterized by fluorescence, Fourier transform infrared(FTIR), high resolution transmission electron microscopy(HR-TEM) and ^(13)C NMR. Since the fluorescence of the carbon dots was efficiently quenched by folic acid, the carbon dots were employed as selective fluorescence probes for detecting folic acid, depending on the formation of hydrogen bond among the functional group of folic acid(–OH, –COOH and –NH_2) and –OH and –COOH of the carbon dots. Moreover, the decrease of fluorescence intensity was capable of detecting folic acid in a linear range of 6×10^(-5)–8×10^(-8) mol/L with a detection limit of 1.2×10^(-9)mol/L at a signal-to-noise ratio of 3, suggesting a promising assay for folic acid. Significantly, the practicability of this fluorescence probe to assay folic acid in human urine samples was further evaluated.