期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多特征融合的乳腺癌组织病理学图像识别的方法 被引量:2
1
作者 乔世昌 胡红萍 +1 位作者 郝岩 白艳萍 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第2期135-141,共7页
乳腺癌是全球女性常见的癌症类型之一,严重影响了女性的健康,乳腺癌组织病理学图像的识别已成为医学图像处理领域的研究热点。针对Bioimaging 2015数据集进行乳腺癌组织病理学图像的识别研究,将该数据集分为癌类与非癌类2种。实验提取... 乳腺癌是全球女性常见的癌症类型之一,严重影响了女性的健康,乳腺癌组织病理学图像的识别已成为医学图像处理领域的研究热点。针对Bioimaging 2015数据集进行乳腺癌组织病理学图像的识别研究,将该数据集分为癌类与非癌类2种。实验提取了乳腺癌组织病理学图像染色分离后4个方向上的灰度共生矩阵特征、小波特征及Tamura纹理特征,并根据颜色自动相关图提取了原始图像的颜色特征,同时也提取了染色分离前水平方向上的灰度共生矩阵特征作为纹理信息的补充,最后将提取到的特征进行融合,并输入到支持向量机分类器中,以实现乳腺癌组织病理学图像的识别,识别准确率达到了83.33%。 展开更多
关键词 乳腺癌组织病理图像 灰度共生矩阵 颜色自动相关图
下载PDF
自适应小数据集乳腺癌病理组织分类研究 被引量:2
2
作者 和青芳 王慧 程光 《计算机科学》 CSCD 北大核心 2021年第S01期67-73,84,共8页
针对乳腺癌病理组织图像数据普遍存在数据集规模小、良性和恶性样本数量分布不均衡、自动识别精度低的现状,利用深度可分离卷积、小卷积核堆叠、增深降维等技术,结合文中提出的"SoftMax+WF"设计具备合理深度和宽度、适应小数... 针对乳腺癌病理组织图像数据普遍存在数据集规模小、良性和恶性样本数量分布不均衡、自动识别精度低的现状,利用深度可分离卷积、小卷积核堆叠、增深降维等技术,结合文中提出的"SoftMax+WF"设计具备合理深度和宽度、适应小数据集、轻型的病理组织图像分类模型。在图像旋转、扭曲等传统增强数据方法基础上,采用随机不重复裁切法均衡良、恶性样本数量并扩充数据集。针对训练集中难以聚类的样本,提出"弱特征"概念、"弱特征"样本提取算法和自适应调整、二次训练算法改进模型训练。在参数设置和运行环境相同的条件下,进行8组比对实验,模型的准确率、敏感度、特异度均可达97%以上。实验结果证明文中设计的模型性能稳定,对小数据集和不均衡数据集具有较好的包容性和适应性。 展开更多
关键词 乳腺癌病理组织图像 自适应小数据集 弱特征 卷积神经网络 深度可分离卷积 深度学习
下载PDF
融合多尺度特征和多重注意力的乳腺癌图像分类方法
3
作者 韩玉静 陈辉 《宁夏师范学院学报》 2023年第7期101-112,共12页
针对深度学习模型在乳腺癌辅助诊断中提取特征不充分以及分类准确率低等问题,提出一种融合多尺度特征和多重注意力的乳腺癌图像分类方法.首先在骨干网络Res2Net50中引入三重注意力模块,加强模型对重要特征的关注度;其次利用设计的多尺... 针对深度学习模型在乳腺癌辅助诊断中提取特征不充分以及分类准确率低等问题,提出一种融合多尺度特征和多重注意力的乳腺癌图像分类方法.首先在骨干网络Res2Net50中引入三重注意力模块,加强模型对重要特征的关注度;其次利用设计的多尺度特征融合模块充分融合图像的特征;最后利用宽度学习系统对融合后的特征向量进行分类.同时模型中运用迁移学习解决乳腺癌图像样本量不足引起的分类效果不佳等问题.实验结果表明该方法对于不同放大倍数下获取的病理图像具有较好的健壮性,有效地提高了深度学习模型对于乳腺癌诊断的性能. 展开更多
关键词 图像分类 乳腺癌组织病理图像 多重注意力 多尺度特征融合 迁移学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部