期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于nnU-Net的乳腺DCE-MR图像中乳房和腺体自动分割 被引量:5
1
作者 霍璐 胡晓欣 +3 位作者 肖勤 顾雅佳 褚旭 姜娈 《波谱学杂志》 北大核心 2021年第3期367-380,共14页
在乳腺动态增强磁共振(DCE-MR)图像中,乳房分割和腺体分割是进行乳腺癌风险评估的关键步骤.为实现在三维脂肪抑制乳腺DCE-MR图像中乳房和腺体的自动分割,本文提出一种基于nnU-Net的自动分割模型,利用U-Net分层学习图像特征的优势,融合... 在乳腺动态增强磁共振(DCE-MR)图像中,乳房分割和腺体分割是进行乳腺癌风险评估的关键步骤.为实现在三维脂肪抑制乳腺DCE-MR图像中乳房和腺体的自动分割,本文提出一种基于nnU-Net的自动分割模型,利用U-Net分层学习图像特征的优势,融合深层特征与浅层特征,得到乳房分割和腺体分割结果.同时,基于nnU-Net策略,所使用的模型能根据图像参数自动进行预处理和数据扩增,并动态调整网络结构和参数配置.实验结果表明,在具有多样化参数的三维脂肪抑制乳腺DCE-MR图像数据集上,该模型能准确、有效地实现乳房和腺体分割,平均Dice相似系数分别达到0.969±0.007和0.893±0.054. 展开更多
关键词 乳腺动态增强磁共振图像 乳房分割 腺体分割 深度学习 nnU-Net模型
下载PDF
基于帧间相关性的乳腺MRI三维分割 被引量:3
2
作者 褚晶辉 王星宇 吕卫 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2017年第8期835-842,共8页
针对乳腺磁共振图像序列的肿瘤分割问题,提出一种基于超像素和改进C-V模型的三维全自动分割方法.该方法利用磁共振图像序列的帧间相关性,约束相邻帧图像的分割轮廓.采用超像素算法提取肿瘤的大致轮廓,再用改进的C-V水平集算法对可疑区... 针对乳腺磁共振图像序列的肿瘤分割问题,提出一种基于超像素和改进C-V模型的三维全自动分割方法.该方法利用磁共振图像序列的帧间相关性,约束相邻帧图像的分割轮廓.采用超像素算法提取肿瘤的大致轮廓,再用改进的C-V水平集算法对可疑区域边缘进行优化,使其更接近肿瘤的实际边缘.将该方法及3种对比方法应用于89例乳腺MRI序列图像.以手动分割的轮廓为基准,该方法得到的平均重叠率为87.84%,,相比于C-V模型的58.90%,、超像素和水平集结合的76.36%,、K均值+C-V的83.62%,,有明显提升.实验结果表明,该方法的全自动分割结果对于肿瘤起始和终止帧图像具有较高的分割精度. 展开更多
关键词 乳腺磁共振图像 病灶分割 帧间相关性 超像素 水平集
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部