The research was first to perform the utilization of novel and cheap pectin crude extract from Krung Kha Mao leaves (Cissampelos pareira L.) to immobilize cells of Lactobacillus casei subsp, rhamnosus TISTR 108 and ...The research was first to perform the utilization of novel and cheap pectin crude extract from Krung Kha Mao leaves (Cissampelos pareira L.) to immobilize cells of Lactobacillus casei subsp, rhamnosus TISTR 108 and Lactobacillus delbrueckii subsp, bulgaricus TISTR 1339 for lactic acid production, the optimum condition of immobilized cells was produced significantly at 5% of probability, that the highest lactic acid has been 38.50 and 33.66 g/L in steady state of whey medium for 96 and 108 h, respectively. Both strains were immobilized by 4% (w/w) of pectin crude extract from Krung Kha Mao (KKM pectin) leaves, 1.52 mm inner diameters of silicone tube and 5% (v/v) inoculum for immobilization. Efficiency of lactic acid production was compared by immobilized cells ofL. casei subsp, rhamnosus TISTR 108 when KKM pectin, commercial citrus pectin, commercial apple pectin and sodium alginate were used as supporting materials to produce lactic acid 38.50, 38.76, 30.43 and 34.56 g/L, respectively, the productivity of lactic acid has been 0.40, 0.40, 0.36 and 0.36 g/L h, respectively.展开更多
This research focused using novel substrate, longan Lactobacillus casei subsp, rhamnosus TISTR 108. The optimum juice as carbon source for continuous lactic acid production by medium for lactic acid production was pur...This research focused using novel substrate, longan Lactobacillus casei subsp, rhamnosus TISTR 108. The optimum juice as carbon source for continuous lactic acid production by medium for lactic acid production was pure longan juice with 120 g/L sugar concentration and among the different nitrogen sources were added to the longan juice (yeast extract, tryptic soy, urea, (NH4)2SO4 and NaNO3), yeast extract had the most efficiency. Yeast extract (10 g/L) without adding minerals to longan juice could produced the maximum lactic acid concentration of 38.91 ± 0.190 g/L in 60 h and the yield of 0.460± 0.122 g/g with the productivity of 0.649± 0.002 g/Lh in 2 liters flask. Batch fermentation was conducted in 2 liters fermentor and 41.38± 0.030 g/L lactic acid was produced in 48 h with the yield of 0.398 ± 0.215 g/g and the productivity was 0.862 ± 0.001 g/L h. The continuous fermentation using 2 liters fermentor as a high productivity for lactic acid (1.091 ± 0.001 g/L h) was achieved at dilution rate (D) of 0.0685 h-1.展开更多
L-(+)-lactic acid production was studied by immobilized Lactobacillus rhamnosus T1STR108 on crude pectin from Krung Kha Mao Leaves. Central composite design was employed to determine the maximum lactic acid product...L-(+)-lactic acid production was studied by immobilized Lactobacillus rhamnosus T1STR108 on crude pectin from Krung Kha Mao Leaves. Central composite design was employed to determine the maximum lactic acid production of 42.88 g L-1 in predicted model with the factors at 4.11 g L1 of pectin, 6.05 mLLl inoculum and 1.09 mm of bead diameter. Statistical analyses demonstrated very high significance for the regression model, since the F-value computed 116.09 was much higher than the tabulated F-value 2.08 for the lactic acid production at 5% level for linear and quadratic polynomial regression models. The highest experimental lactic acid production was 43.57 g L^-1 at 96 h of fermentation, 1.58% higher than the predicted value.展开更多
Mutagenesis of Lactobacillus casei subsp, rhamnosus Xl-12 after low power microwave irradiation was investigated. Under a microwave power of 400 W and irradiation length of 3 min, a mutated strain W4-3-9 with high-yie...Mutagenesis of Lactobacillus casei subsp, rhamnosus Xl-12 after low power microwave irradiation was investigated. Under a microwave power of 400 W and irradiation length of 3 min, a mutated strain W4-3-9 with high-yield L-lactic acid was obtained by screening. Compared with the starting strain X1-12, the L-lactic acid production of W4-3-9 was increased by 58.0% at a concentration of 115.8 g/L. The strain maintained the capability of producing a high L-lactic acid level after 10 generations. Cell surface morphology and DNA structures of parental and mutated strains were observed by atomic force microscopy ( AFM ). Amplified fragment length polymorphism (AFLP) analysis suggested the difference in AFLP band pattern between the mutated and non-mutated strains. Sequencing and BLAST analysis revealed that the catalytic site of lactate dehydrogenase (DHL) was changed due to the microwave induced mutation.展开更多
L-(+)-lactic acid production was studied by immobilized Lactobacillus rhamnosus TISTR108 on crude pectin from Krung Kha Mao (Cissampelospareira L.) leaves. Central composite design was employed to determine the m...L-(+)-lactic acid production was studied by immobilized Lactobacillus rhamnosus TISTR108 on crude pectin from Krung Kha Mao (Cissampelospareira L.) leaves. Central composite design was employed to determine the maximum lactic acid production of 45.40 g/L in predicted model (Y = 43.98 - 2.43X1 + 1.02X2 + 2.96X3 - 8.72X1^2 - 3.99X2^2 - 1.74X3^2) with the factors at 5.9 of cultural medium pH, 37.6 ℃ of process temperature and 202 rpm of liquid agitation. Statistical analyses demonstrated very high significance for the regression model fitted the data adequately and explained the lactic acid production, since the F-value computed 54.89 was much higher than the tabulated F-value 2.08 for the lactic acid production at 5% level for linear and quadratic polynomial regression models. The highest experimental lactic acid production was 46.91 g/L at 72 h of fermentation.展开更多
Commercially, many methods are adopted for the production of the Virgin Coconut Oil (VCO). Nowadays, natural fermentation is widely employed to produce VCO in wet processing. But the problem in natural fermentation ...Commercially, many methods are adopted for the production of the Virgin Coconut Oil (VCO). Nowadays, natural fermentation is widely employed to produce VCO in wet processing. But the problem in natural fermentation process has much contamination, due to surplus micro organisms present in natural environment, which leads to the poor quality of VCO. To overcome this, usage of probiotic organism like Lactobacillus fermentum is more beneficial for the fermentative production of VCO. Fermentation studies were conducted scientifically in computer controlled bioreactor to determine the effect of pH, temperature, inoculum concentration, oxygen requirement and incubation time on the yield of VCO. Yield efficiency of VCO in each parameter was determined. The pH of 5± 0.1, temperature at 45 ± 0.1 ~C, inoculum concentration of 2%, fermentation end time of 48 hrs and microaerophilic conditions are the most suitable parameters for the superior production of VCO.展开更多
文摘The research was first to perform the utilization of novel and cheap pectin crude extract from Krung Kha Mao leaves (Cissampelos pareira L.) to immobilize cells of Lactobacillus casei subsp, rhamnosus TISTR 108 and Lactobacillus delbrueckii subsp, bulgaricus TISTR 1339 for lactic acid production, the optimum condition of immobilized cells was produced significantly at 5% of probability, that the highest lactic acid has been 38.50 and 33.66 g/L in steady state of whey medium for 96 and 108 h, respectively. Both strains were immobilized by 4% (w/w) of pectin crude extract from Krung Kha Mao (KKM pectin) leaves, 1.52 mm inner diameters of silicone tube and 5% (v/v) inoculum for immobilization. Efficiency of lactic acid production was compared by immobilized cells ofL. casei subsp, rhamnosus TISTR 108 when KKM pectin, commercial citrus pectin, commercial apple pectin and sodium alginate were used as supporting materials to produce lactic acid 38.50, 38.76, 30.43 and 34.56 g/L, respectively, the productivity of lactic acid has been 0.40, 0.40, 0.36 and 0.36 g/L h, respectively.
文摘This research focused using novel substrate, longan Lactobacillus casei subsp, rhamnosus TISTR 108. The optimum juice as carbon source for continuous lactic acid production by medium for lactic acid production was pure longan juice with 120 g/L sugar concentration and among the different nitrogen sources were added to the longan juice (yeast extract, tryptic soy, urea, (NH4)2SO4 and NaNO3), yeast extract had the most efficiency. Yeast extract (10 g/L) without adding minerals to longan juice could produced the maximum lactic acid concentration of 38.91 ± 0.190 g/L in 60 h and the yield of 0.460± 0.122 g/g with the productivity of 0.649± 0.002 g/Lh in 2 liters flask. Batch fermentation was conducted in 2 liters fermentor and 41.38± 0.030 g/L lactic acid was produced in 48 h with the yield of 0.398 ± 0.215 g/g and the productivity was 0.862 ± 0.001 g/L h. The continuous fermentation using 2 liters fermentor as a high productivity for lactic acid (1.091 ± 0.001 g/L h) was achieved at dilution rate (D) of 0.0685 h-1.
文摘L-(+)-lactic acid production was studied by immobilized Lactobacillus rhamnosus T1STR108 on crude pectin from Krung Kha Mao Leaves. Central composite design was employed to determine the maximum lactic acid production of 42.88 g L-1 in predicted model with the factors at 4.11 g L1 of pectin, 6.05 mLLl inoculum and 1.09 mm of bead diameter. Statistical analyses demonstrated very high significance for the regression model, since the F-value computed 116.09 was much higher than the tabulated F-value 2.08 for the lactic acid production at 5% level for linear and quadratic polynomial regression models. The highest experimental lactic acid production was 43.57 g L^-1 at 96 h of fermentation, 1.58% higher than the predicted value.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50778053)
文摘Mutagenesis of Lactobacillus casei subsp, rhamnosus Xl-12 after low power microwave irradiation was investigated. Under a microwave power of 400 W and irradiation length of 3 min, a mutated strain W4-3-9 with high-yield L-lactic acid was obtained by screening. Compared with the starting strain X1-12, the L-lactic acid production of W4-3-9 was increased by 58.0% at a concentration of 115.8 g/L. The strain maintained the capability of producing a high L-lactic acid level after 10 generations. Cell surface morphology and DNA structures of parental and mutated strains were observed by atomic force microscopy ( AFM ). Amplified fragment length polymorphism (AFLP) analysis suggested the difference in AFLP band pattern between the mutated and non-mutated strains. Sequencing and BLAST analysis revealed that the catalytic site of lactate dehydrogenase (DHL) was changed due to the microwave induced mutation.
文摘L-(+)-lactic acid production was studied by immobilized Lactobacillus rhamnosus TISTR108 on crude pectin from Krung Kha Mao (Cissampelospareira L.) leaves. Central composite design was employed to determine the maximum lactic acid production of 45.40 g/L in predicted model (Y = 43.98 - 2.43X1 + 1.02X2 + 2.96X3 - 8.72X1^2 - 3.99X2^2 - 1.74X3^2) with the factors at 5.9 of cultural medium pH, 37.6 ℃ of process temperature and 202 rpm of liquid agitation. Statistical analyses demonstrated very high significance for the regression model fitted the data adequately and explained the lactic acid production, since the F-value computed 54.89 was much higher than the tabulated F-value 2.08 for the lactic acid production at 5% level for linear and quadratic polynomial regression models. The highest experimental lactic acid production was 46.91 g/L at 72 h of fermentation.
文摘Commercially, many methods are adopted for the production of the Virgin Coconut Oil (VCO). Nowadays, natural fermentation is widely employed to produce VCO in wet processing. But the problem in natural fermentation process has much contamination, due to surplus micro organisms present in natural environment, which leads to the poor quality of VCO. To overcome this, usage of probiotic organism like Lactobacillus fermentum is more beneficial for the fermentative production of VCO. Fermentation studies were conducted scientifically in computer controlled bioreactor to determine the effect of pH, temperature, inoculum concentration, oxygen requirement and incubation time on the yield of VCO. Yield efficiency of VCO in each parameter was determined. The pH of 5± 0.1, temperature at 45 ± 0.1 ~C, inoculum concentration of 2%, fermentation end time of 48 hrs and microaerophilic conditions are the most suitable parameters for the superior production of VCO.