A novel marine microbial esterase PHE14 was cloned from the genome of Pseudomonas oryzihabit‐ans HUP022 isolated from the deep sea of the western Pacific Ocean. Esterase PHE14 exhibited very good tolerance to most or...A novel marine microbial esterase PHE14 was cloned from the genome of Pseudomonas oryzihabit‐ans HUP022 isolated from the deep sea of the western Pacific Ocean. Esterase PHE14 exhibited very good tolerance to most organic solvents, surfactants and metal ions tested, thus making it a good esterase candidate for organic synthesis that requires an organic solvent, surfactants or metal ions. Esterase PHE14 was utilized as a biocatalyst in the asymmetric synthesis of D‐methyl lactate by enzymatic kinetic resolution. D‐methyl lactate is a key chiral chemical. Contrary to some previous reports, the addition of an organic solvent and surfactants in the enzymatic reaction did not have a beneficial effect on the kinetic resolution catalyzed by esterase PHE14. Our study is the first report on the preparation of the enantiomerically enriched product D‐methyl lactate by enzymatic kinetic resolution. The desired enantiomerically enriched product D‐methyl lactate was obtained with a high enantiomeric excess of 99%and yield of 88.7%after process optimization. The deep sea mi‐crobial esterase PHE14 is a green biocatalyst with very good potential in asymmetric synthesis in industry and can replace the traditional organic synthesis that causes pollution to the environment.展开更多
Thermal decomposition of polylactic acid (PLA) was studied in the presence of pine wood sawdust (PS), walnut shell (WS), corncob (CC) in order to understand the pyrolytic behavior of these components occurring...Thermal decomposition of polylactic acid (PLA) was studied in the presence of pine wood sawdust (PS), walnut shell (WS), corncob (CC) in order to understand the pyrolytic behavior of these components occurring in waste. A thermogravimetric analyzer (TGA) was applied for monitoring the mass loss profiles under heating rate of 10℃·min^-1. Results obtained from this comprehensive investigation indicated that PLA was decomposed in the temperature range 300 -372℃, whereas the thermal degradation temperature of biomass is 183-462℃. The difference of mass loss (AW) between experimental and theoretical ones, calculated as algebraic sums of those from each separated component, is about 17%-46% at 300-400℃. These experimental results indicated a significant synergistic effect during PLA and biomass copyrolysis. Moreover, a kinetic analysis was performed to fit thermogravimetric data, the global processes being considered as one to two consecutive reactions. A reasonable fit to the experimental data was obtained for all materials and their blends.展开更多
The presence of Geotrichum candidum in fresh cheese is considered to be a contaminant and may lead to the product spoilage. The oxidative yeast Candida maltosa firstly isolated from the spoiled fruit yoghurt surface i...The presence of Geotrichum candidum in fresh cheese is considered to be a contaminant and may lead to the product spoilage. The oxidative yeast Candida maltosa firstly isolated from the spoiled fruit yoghurt surface in Slovakia belongs to the yeast contaminants of fermented dairy products. The effect of the cultivation temperature and the presence of Lactobacillus rhamnosus GG on the growth of dairy spoilage yeasts in ultrapasteurized milk was studied. Addition of Lb. rhamnosus GG in milk caused partial inhibition of the yeast growth dynamics in milk. The water activity transformation of Gibson model after the temperature modification (Tw) was applied to model growth dynamics of G. candidum in pure and mixed culture, respectively: In μ_Gc=-5.0376+2.7281 Tw-0.4217Tw^2, lnμ_CC_LGG=-6.0033+3.2996Tw-0.5553Tw^2. The effect of different Lb. rhamnosus GG addition and the incubation temperature on the C. maltosa growth dynamics was analyzed by linear regression methodology and described by using following equations: lnGr1=-5.3674+0.2341T+0.2599N0-0.0032T^2-0.0492N0^2-0.0068TN0 and lnGr11=-9.5457-0.249T+2.3823N0 +0.0099T^2-0.2324N0^2+0.0098TN0 Based on the principles of predictive microbiology, the mutual microbial interactions and potential application of the lactobacillus strains in food protection are discussed.展开更多
A significant enhancement in isothermal crystallization kinetics of biodegradable polylactide(PLA) in its immiscible blends can be accomplished through blending it with a comb-like copolymer. PLA was blended with poly...A significant enhancement in isothermal crystallization kinetics of biodegradable polylactide(PLA) in its immiscible blends can be accomplished through blending it with a comb-like copolymer. PLA was blended with poly(ethylene glycol) methyl ether acrylate(PEGA) and poly[poly(ethylene glycol) methyl ether acrylate](PPEGA, a comb-like copolymer), respectively. The results measured from phase contrast optical microscopy(PCOM) and differential scanning calorimetry(DSC) indicate that PLA and PEGA components are miscible, whereas PLA and PPEGA components are immiscible. The study of crystallization kinetics for PLA/PEGA and PLA/PPEGA blends by means of polarized optical microscopy(POM) and DSC indicates that both PEGA and PPEGA significantly increase the PLA spherulitic growth rates, G, although PLA/PPEGA blends are immiscible and the glass transition temperatures of PLA only have slight decreases. PPEGA component enhances nucleation for PLA crystallization as compared with PEGA component owing to the heterogeneous nucleation effect of PPEGA at the low composition of 20 wt%, while PLA crystallization-induced phase separation for PLA/PEGA blend might cause further nucleation at the high composition of 50 wt%. DSC measurement further demonstrates that isothermal crystallization kinetics can be relatively more enhanced for PLA/PPEGA blends than for PLA/PEGA blends. The "abnormal" enhancement in G for PLA in its immiscible blends can be explained by local interfacial interactions through the densely grafted PEGA side chains in the comb-like PPEGA, even though the whole blend system(PLA/PPEGA blends) represents an immiscible one.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030404)Key Project from the Chinese Academy of Sciences (KGZD-EW-606)+1 种基金the National Natural Science Foundation of China (21302199)Guangzhou Science and Technology Plan Projects (201510010012)~~
文摘A novel marine microbial esterase PHE14 was cloned from the genome of Pseudomonas oryzihabit‐ans HUP022 isolated from the deep sea of the western Pacific Ocean. Esterase PHE14 exhibited very good tolerance to most organic solvents, surfactants and metal ions tested, thus making it a good esterase candidate for organic synthesis that requires an organic solvent, surfactants or metal ions. Esterase PHE14 was utilized as a biocatalyst in the asymmetric synthesis of D‐methyl lactate by enzymatic kinetic resolution. D‐methyl lactate is a key chiral chemical. Contrary to some previous reports, the addition of an organic solvent and surfactants in the enzymatic reaction did not have a beneficial effect on the kinetic resolution catalyzed by esterase PHE14. Our study is the first report on the preparation of the enantiomerically enriched product D‐methyl lactate by enzymatic kinetic resolution. The desired enantiomerically enriched product D‐methyl lactate was obtained with a high enantiomeric excess of 99%and yield of 88.7%after process optimization. The deep sea mi‐crobial esterase PHE14 is a green biocatalyst with very good potential in asymmetric synthesis in industry and can replace the traditional organic synthesis that causes pollution to the environment.
文摘Thermal decomposition of polylactic acid (PLA) was studied in the presence of pine wood sawdust (PS), walnut shell (WS), corncob (CC) in order to understand the pyrolytic behavior of these components occurring in waste. A thermogravimetric analyzer (TGA) was applied for monitoring the mass loss profiles under heating rate of 10℃·min^-1. Results obtained from this comprehensive investigation indicated that PLA was decomposed in the temperature range 300 -372℃, whereas the thermal degradation temperature of biomass is 183-462℃. The difference of mass loss (AW) between experimental and theoretical ones, calculated as algebraic sums of those from each separated component, is about 17%-46% at 300-400℃. These experimental results indicated a significant synergistic effect during PLA and biomass copyrolysis. Moreover, a kinetic analysis was performed to fit thermogravimetric data, the global processes being considered as one to two consecutive reactions. A reasonable fit to the experimental data was obtained for all materials and their blends.
文摘The presence of Geotrichum candidum in fresh cheese is considered to be a contaminant and may lead to the product spoilage. The oxidative yeast Candida maltosa firstly isolated from the spoiled fruit yoghurt surface in Slovakia belongs to the yeast contaminants of fermented dairy products. The effect of the cultivation temperature and the presence of Lactobacillus rhamnosus GG on the growth of dairy spoilage yeasts in ultrapasteurized milk was studied. Addition of Lb. rhamnosus GG in milk caused partial inhibition of the yeast growth dynamics in milk. The water activity transformation of Gibson model after the temperature modification (Tw) was applied to model growth dynamics of G. candidum in pure and mixed culture, respectively: In μ_Gc=-5.0376+2.7281 Tw-0.4217Tw^2, lnμ_CC_LGG=-6.0033+3.2996Tw-0.5553Tw^2. The effect of different Lb. rhamnosus GG addition and the incubation temperature on the C. maltosa growth dynamics was analyzed by linear regression methodology and described by using following equations: lnGr1=-5.3674+0.2341T+0.2599N0-0.0032T^2-0.0492N0^2-0.0068TN0 and lnGr11=-9.5457-0.249T+2.3823N0 +0.0099T^2-0.2324N0^2+0.0098TN0 Based on the principles of predictive microbiology, the mutual microbial interactions and potential application of the lactobacillus strains in food protection are discussed.
基金supported by the National Basic Research Program of China (2012CB025901)the National Natural Science Foundation of China (21174139)the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
文摘A significant enhancement in isothermal crystallization kinetics of biodegradable polylactide(PLA) in its immiscible blends can be accomplished through blending it with a comb-like copolymer. PLA was blended with poly(ethylene glycol) methyl ether acrylate(PEGA) and poly[poly(ethylene glycol) methyl ether acrylate](PPEGA, a comb-like copolymer), respectively. The results measured from phase contrast optical microscopy(PCOM) and differential scanning calorimetry(DSC) indicate that PLA and PEGA components are miscible, whereas PLA and PPEGA components are immiscible. The study of crystallization kinetics for PLA/PEGA and PLA/PPEGA blends by means of polarized optical microscopy(POM) and DSC indicates that both PEGA and PPEGA significantly increase the PLA spherulitic growth rates, G, although PLA/PPEGA blends are immiscible and the glass transition temperatures of PLA only have slight decreases. PPEGA component enhances nucleation for PLA crystallization as compared with PEGA component owing to the heterogeneous nucleation effect of PPEGA at the low composition of 20 wt%, while PLA crystallization-induced phase separation for PLA/PEGA blend might cause further nucleation at the high composition of 50 wt%. DSC measurement further demonstrates that isothermal crystallization kinetics can be relatively more enhanced for PLA/PPEGA blends than for PLA/PEGA blends. The "abnormal" enhancement in G for PLA in its immiscible blends can be explained by local interfacial interactions through the densely grafted PEGA side chains in the comb-like PPEGA, even though the whole blend system(PLA/PPEGA blends) represents an immiscible one.