The operational environment of today's smart grids is becoming more complicated than ever before. A number of factors, including renewable penetration, marketization, cyber security, and hazards of nature, bring c...The operational environment of today's smart grids is becoming more complicated than ever before. A number of factors, including renewable penetration, marketization, cyber security, and hazards of nature, bring challenges and even threats to control centers. New techniques are anticipated to help dispatchers become aware of the accurate situations as they manipulate and navigate the situations as quickly as possible. To address the issues, we first introduce the background for this topic as well as the emerging technical demands of situational awareness in the dispatcher's environment. The general concepts and technical requirements of situational awareness are then summarized, aimed at offering an overview for readers to understand the state-of-the-art progress in this area. In addition, we discuss the importance of integrating the architecture of support tools in accordance with the dispatcher's thought process, which in fact guides correct and swift reactions in real-time operations. Finally, the prospects for situational awareness architecture are investigated with the goal of presenting situational awareness modules in an advanced and visualized manner.展开更多
基金the National Natural Science Foundation of China(No.51437003)
文摘The operational environment of today's smart grids is becoming more complicated than ever before. A number of factors, including renewable penetration, marketization, cyber security, and hazards of nature, bring challenges and even threats to control centers. New techniques are anticipated to help dispatchers become aware of the accurate situations as they manipulate and navigate the situations as quickly as possible. To address the issues, we first introduce the background for this topic as well as the emerging technical demands of situational awareness in the dispatcher's environment. The general concepts and technical requirements of situational awareness are then summarized, aimed at offering an overview for readers to understand the state-of-the-art progress in this area. In addition, we discuss the importance of integrating the architecture of support tools in accordance with the dispatcher's thought process, which in fact guides correct and swift reactions in real-time operations. Finally, the prospects for situational awareness architecture are investigated with the goal of presenting situational awareness modules in an advanced and visualized manner.