This study focuses on examining the characteristics of climate factors and extreme climate events in Northeast China during 1961- 2010 by using daily data from 104 stations, including surface air temperature, precipit...This study focuses on examining the characteristics of climate factors and extreme climate events in Northeast China during 1961- 2010 by using daily data from 104 stations, including surface air temperature, precipitation, wind speed, sunshine duration, and snow depth. Results show that annual mean temperature increased at a significant rate of 0.35℃ per decade, most notably in the Lesser Khingan Mountains and in winter. Annual rainfall had no obvious linear trend, while rainy days had a significant decreasing trend. So, the rain intensity increased. High-temperature days had a weak increasing trend, and low-temperature days and cold wave showed significant decreasing trends with rates of 3.9 d per decade and -0.64 times per decade, respectively. Frequency and spatial scope of low-temperature hazard reduced significantly. Warm days and warm nights significantly increased at 1.0 and 2.4 d per decade, while cold days and cold nights decreased significantly at -1.8 and -4.1 d per decade, respectively. The nighttime warming rate was much higher than that for daytime, indicating that nighttime warming had a greater contribution to the overall warming trend than daytime warming. The annual mean wind speed, gale days, and sunshine duration had significant decreasing trends at rates of-0.21 m s-1 per decade, -4.0 d per decade and -43.3 h per decade, respectively. The snow cover onset dates postponed at a rate of 1.2 d per decade, and the snow cover end date advanced at 1.5 d per decade, which leads to shorter snow cover duration by -2.7 d per decade. Meanwhile, the maximum snow depth decreased at -0.52 cm per decade. In addition, the snow cover duration shows a higher correlation with precipitation than with temperature, which suggests that precipitation plays a more important role in maintaining snow cover duration than temperature.展开更多
Daily climate data at 110 stations during 1961-2010 were selected to examine the changing characteristics of climate factors and extreme climate events in South China. The annual mean surface air temperature has incre...Daily climate data at 110 stations during 1961-2010 were selected to examine the changing characteristics of climate factors and extreme climate events in South China. The annual mean surface air temperature has increased significantly by 0.16℃ per decade, most notably in the Pearl River Delta and in winter. The increase rate of the annual extreme minimum temperature (0.48℃ per decade) is over twice that of the annual extreme maximum temperature (0.20℃ per decade), and the increase of the mean temperature is mainly the result of the increase of the extreme minimum temperature. The increase rate of high-temperature days (1.1 d per decade) is close to the decrease rate of low-temperature days (-1.3 d per decade). The rainfall has not shown any significant trend, but the number of rainy days has decreased and the rain intensity has increased. The regional mean sunshine duration has a significant decreasing trend of -40.9 h per decade, and the number of hazy days has a significant increasing trend of 6.3 d per decade. The decrease of sunshine duration is mainly caused by the increase of total cloud, not by the increase of hazy days in South China. Both the regional mean pan evaporation and mean wind speed have significant decreasing trends of -65.9 mm per decade and -0.11 m s-1 per decade, respectively. The decrease of both sunshine duration and mean wind speed plays an important role in the decrease of pan evaporation. The number of landing tropical cyclones has an insignificant decreasing trend of -0.6 per decade, but their intensities show a weak increasing trend. The formation location of tropical cyclones landing in South China has converged towards 10-19°N, and the landing position has shown a northward trend. The date of the first landfall tropical cyclone postpones 1.8 d per decade, and the date of the last landfall advances 3.6 d per decade, resulting in reduction of the typhoon season by 5.4 d per decade.展开更多
基金supported by the Special Climate Change Research Program of China Meteorological Ad-ministration (No.062700s010c01)the Special Scientific Research Fund of Meteorological Public Welfare Profession of China (No.201206024)
文摘This study focuses on examining the characteristics of climate factors and extreme climate events in Northeast China during 1961- 2010 by using daily data from 104 stations, including surface air temperature, precipitation, wind speed, sunshine duration, and snow depth. Results show that annual mean temperature increased at a significant rate of 0.35℃ per decade, most notably in the Lesser Khingan Mountains and in winter. Annual rainfall had no obvious linear trend, while rainy days had a significant decreasing trend. So, the rain intensity increased. High-temperature days had a weak increasing trend, and low-temperature days and cold wave showed significant decreasing trends with rates of 3.9 d per decade and -0.64 times per decade, respectively. Frequency and spatial scope of low-temperature hazard reduced significantly. Warm days and warm nights significantly increased at 1.0 and 2.4 d per decade, while cold days and cold nights decreased significantly at -1.8 and -4.1 d per decade, respectively. The nighttime warming rate was much higher than that for daytime, indicating that nighttime warming had a greater contribution to the overall warming trend than daytime warming. The annual mean wind speed, gale days, and sunshine duration had significant decreasing trends at rates of-0.21 m s-1 per decade, -4.0 d per decade and -43.3 h per decade, respectively. The snow cover onset dates postponed at a rate of 1.2 d per decade, and the snow cover end date advanced at 1.5 d per decade, which leads to shorter snow cover duration by -2.7 d per decade. Meanwhile, the maximum snow depth decreased at -0.52 cm per decade. In addition, the snow cover duration shows a higher correlation with precipitation than with temperature, which suggests that precipitation plays a more important role in maintaining snow cover duration than temperature.
基金supported by the Special Climate Change Research Program of China Meteorological Administration (No. CCSF-09-11, CCSF-09-03, CCSF2011-25, and CCSF201211)the Science and Technology Planning Project of Guangdong province (No.2011A030200021)
文摘Daily climate data at 110 stations during 1961-2010 were selected to examine the changing characteristics of climate factors and extreme climate events in South China. The annual mean surface air temperature has increased significantly by 0.16℃ per decade, most notably in the Pearl River Delta and in winter. The increase rate of the annual extreme minimum temperature (0.48℃ per decade) is over twice that of the annual extreme maximum temperature (0.20℃ per decade), and the increase of the mean temperature is mainly the result of the increase of the extreme minimum temperature. The increase rate of high-temperature days (1.1 d per decade) is close to the decrease rate of low-temperature days (-1.3 d per decade). The rainfall has not shown any significant trend, but the number of rainy days has decreased and the rain intensity has increased. The regional mean sunshine duration has a significant decreasing trend of -40.9 h per decade, and the number of hazy days has a significant increasing trend of 6.3 d per decade. The decrease of sunshine duration is mainly caused by the increase of total cloud, not by the increase of hazy days in South China. Both the regional mean pan evaporation and mean wind speed have significant decreasing trends of -65.9 mm per decade and -0.11 m s-1 per decade, respectively. The decrease of both sunshine duration and mean wind speed plays an important role in the decrease of pan evaporation. The number of landing tropical cyclones has an insignificant decreasing trend of -0.6 per decade, but their intensities show a weak increasing trend. The formation location of tropical cyclones landing in South China has converged towards 10-19°N, and the landing position has shown a northward trend. The date of the first landfall tropical cyclone postpones 1.8 d per decade, and the date of the last landfall advances 3.6 d per decade, resulting in reduction of the typhoon season by 5.4 d per decade.