For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of micros...For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of microseismic events in mine engineering without wave mode identification and velocities. Based on the wave equation in a spherical coordinate system, we derive a tomographic imaging equation and formulate a scanning parameter selection criterion by which the microseisimic event maximum energy and corresponding parameters can be determined. By determining the maximum energy positions inside a given risk district, we can indentify microseismic events inside or outside the risk districts. The synthetic and field examples demonstrate that the proposed tomographic imaging method can automatically position microseismic events by only knowing the risk district dimensions and range of velocities without identifying the wavefield modes and accurate velocities. Therefore, the new method utilizes the full wavefields to automatically monitor microseismic events.展开更多
This paper briefly discusses some interesting features for the external region of the spherical symmetric mass in the new theory of gravitation VGM, i.e. the theory of gravitation by considering the vector graviton fi...This paper briefly discusses some interesting features for the external region of the spherical symmetric mass in the new theory of gravitation VGM, i.e. the theory of gravitation by considering the vector graviton field and the metric field, such as pseudo-singularity, curvature tensor, static limit, event horizon, and the radial motion of a particle. All these features are different from the corresponding features obtained from general relativity.展开更多
基金support jointly by projects of the National Natural Science Fund Project (40674017 and 50774012)the National Key Basic Research and Development Plan 973 (2010CB226803)
文摘For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of microseismic events in mine engineering without wave mode identification and velocities. Based on the wave equation in a spherical coordinate system, we derive a tomographic imaging equation and formulate a scanning parameter selection criterion by which the microseisimic event maximum energy and corresponding parameters can be determined. By determining the maximum energy positions inside a given risk district, we can indentify microseismic events inside or outside the risk districts. The synthetic and field examples demonstrate that the proposed tomographic imaging method can automatically position microseismic events by only knowing the risk district dimensions and range of velocities without identifying the wavefield modes and accurate velocities. Therefore, the new method utilizes the full wavefields to automatically monitor microseismic events.
文摘This paper briefly discusses some interesting features for the external region of the spherical symmetric mass in the new theory of gravitation VGM, i.e. the theory of gravitation by considering the vector graviton field and the metric field, such as pseudo-singularity, curvature tensor, static limit, event horizon, and the radial motion of a particle. All these features are different from the corresponding features obtained from general relativity.